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Abstract

Advances in machine learning in medical imaging are occurring at a rapid pace in research laboratories both at academic institutions and
in industry. Important artificial intelligence (AI) tools for diagnostic imaging include algorithms for disease detection and classification,
image optimization, radiation reduction, and workflow enhancement. Although advances in foundational research are occurring rapidly,
translation to routine clinical practice has been slower. In August 2018, the National Institutes of Health assembled multiple relevant
stakeholders at a public meeting to discuss the current state of knowledge, infrastructure gaps, and challenges to wider implementation.
The conclusions of that meeting are summarized in two publications that identify and prioritize initiatives to accelerate foundational and
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translational research in AI for medical imaging. This publication summarizes key priorities for translational research developed at the
workshop including: (1) creating structured AI use cases, defining and highlighting clinical challenges potentially solvable by AI; (2)
establishing methods to encourage data sharing for training and testing AI algorithms to promote generalizability to widespread clinical
practice and mitigate unintended bias; (3) establishing tools for validation and performance monitoring of AI algorithms to facilitate
regulatory approval; and (4) developing standards and common data elements for seamless integration of AI tools into existing clinical
workflows. An important goal of the resulting road map is to grow an ecosystem, facilitated by professional societies, industry, and
government agencies, that will allow robust collaborations between practicing clinicians and AI researchers to advance foundational and
translational research relevant to medical imaging.

J Am Coll Radiol 2019;-:---. � 2019 Published by Elsevier on behalf of American College of Radiology
BACKGROUND
Fueled by advances in computing power, data availability,
and machine learning techniques, applications of artificial
intelligence (AI) are rapidly increasing in many industries,
including health care and medical imaging. Although
initial hype suggested that AI algorithms might
soon replace portions of our diagnostic imaging workforce
[1–3], most experts believe, if properly applied, AI will
augment the care being provided by radiologists and
improve patient outcomes [4,5]. But with these promises
also come perils. The Department of Defense,
understandably interested in advances in AI technologies,
cosponsored the 2017 Jason Study on AI relevant to
national defense, which in part highlighted the
unintended consequences of certain computational
approaches to data evaluation and how easily algorithms
can be misled such that the slightest intentional
introduction of what a human would see as noise can
significantly change the result or confidence level of the
algorithm inference [6]. That brittle nature of AI was not
acceptable to the Department of Defense, and neither
should it be acceptable for medical imaging. If AI for
medical imaging is not developed and advanced in a way
that robustly addresses its current frailties and ensures that
algorithms are useful, safe, effective, and easily integrated
into physicians’ workflows, AI models in health care could
produce misinformation, could introduce unintended
bias, and may actually hinder care rather than enhance it
[7]. Interconnectivity, interoperability, and cybersecurity
challenges will need to be resolved parallel to advances in
AI technology to ensure integrity of training data and
effective implementation of AI in clinical practice.
Additionally, end users with a broad level of expertise
must be involved in algorithm testing to ensure
algorithms perform as anticipated.

The stakeholder community for AI in health care is very
complex. To develop and maintain an ecosystem for AI in
medical imaging, both software development and health
care stakeholdersmust be considered. Although data science
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researchers and developers of AI applications may be more
acquainted with the software development ecosystem, they
may be unfamiliar with the numerous idiosyncrasies of the
health care ecosystem. For the health care system to become
a viable market for AI applications related to medical im-
aging, the diagnostic imaging community, including both
researchers and practicing physicians,must take on a leading
role in working with data science researchers, AI developers,
and standards bodies to ensure effective pathways for both
foundational and translational research to ensure reliable
deployment of AI into clinical practice.

On August 2, 2018, a 2-day international workshop
convened by the National Institute of Biomedical Imaging
and Bioengineering and cosponsored by RSNA, ACR, the
Academy of Radiology and Biomedical Research (The
Academy), and theNational Institutes ofHealth (NIH) was
held to bring stakeholders from academia, industry and
government, including the US FDA, the National Institute
of Standards and Technology (NIST), National Science
Foundation (NSF), and NIH, together to discuss current
knowledge and research gaps to identify and prioritize
future initiatives for foundational and translational research
in AI for medical imaging. Presenters included an interna-
tional group of data science researchers, radiologists, in-
dustry developers, medical specialty society representatives,
and government officials. The audience included hundreds
of on-site and virtual attendees representing all stakeholders,
many of whom provided valuable insights to the work-
group. As a result of the workgroup, a road map for foun-
dational research has been recently published [8]. This
article will summarize the translational research aspects of
those discussions. All sessions were recorded and are
available at the NIH website [9,10].
OVERVIEW OF THE CURRENT STATE

Concept to Market
AI development in health care (Fig. 1), as in any industry, will
have a cycle from concept to deployment that begins as a
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Fig 1. As in other industries, AI development in medical imaging includes both foundational and translational research activities.
The foundational portion of the National Institutes of Health Workshop considered research priorities to accelerate and improve
the development of AI algorithms for medical imaging [8]. The translational portion of the workshop considered medical imaging
use cases for algorithm development and how these applications will be validated, deployed, and monitored in routine clinical
practice. The diagram shows how foundational and translational research activities are connected. Foundational research leads to
new image reconstruction and labeling methods, new machine learning algorithms, and new explanation methods, each of which
enhance the data sets, data engineering, and data science that lead to the successful deployment of AI applications in medical
imaging. AI ¼ artificial intelligence; EMR ¼ electronic medical record; Recon ¼ reconstruction. The figure was developed by the
authors for publication in both Radiology and JACR. This figure also published in reference 8.
concept of what humans want an AI algorithm to do—that
is, establish a clinical need (Quadrant 1). The next step is the
data engineering component in which machine learning
techniques are used to create an AI algorithm (Quadrants 2
and 3). Finally, integration of the algorithm software into
other applications must occur to fulfill the target audience’s
needs (Quadrant 4). In AI health care development, this
translational cycle will be fueled by foundational research at
each step. The interconnections will form the basis of how
AI will be delivered to the health care community. Initially,
we will likely see machine intelligence combine with
human intelligence in small incremental ways that improve
patient outcomes under specific circumstances. [1,5].
There may be no single sentinel moment that defines the
ubiquitous use of AI in health care. Most people do not
recognize that they have AI in their phones; they just know
that their phones have become progressively “smarter”
[11]. The deployment of AI tools in health care will be
analogous to the progression of AI in smartphones.

As humans look for ways to incorporate AI onto the
practice of medical imaging, it is equally important to un-
derstand the radiology information cycle (Fig. 2). The cycle
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begins as a clinical decision to request a diagnostic
procedure (Quadrant 1) followed by patient preparation,
determination of protocol, and other pre-acquisition steps
(Quadrant 2) before performing the examination (Quadrant
3). After the examination is performed, the radiologist’s
interpretation informs the clinical care team with examina-
tion results and recommendations (Quadrant 4). Although
the interpretation phase is getting the most attention and
media hype for AI, progress in AI research and development
is occurring in all areas, and subject matter experts will be
necessary to convert ideas to improve care into use cases for
AI development for all phases of the information cycle. Ra-
diologists should be ready to take the lead in identifying the
most important areas for AI development.

Focusing on “Narrow AI”
The rate of computational growth over time suggests that
at some point in the future general AI [12] applications—
in which machines will be able to learn, recognize,
generalize, and perform tasks as humans do, in essence
becoming a physician—will impact the way health care
is delivered. But that is well into the future, and
3



Fig 2. The radiology information cycle begins with the decision to request an imaging study (Quadrant 1). Before image
acquisition, previous examinations are reviewed, protocols are determined for the current examinations, and patients are pre-
pared and positioned (Quadrant 2). Next, images are acquired with the proper technique and radiation dose (Quadrant 3), and
finally, the examination is interpreted, incorporating prior relevant information and recommendations are communicated to the
rest of the care team (Quadrant 4). Opportunities exist for artificial intelligence to impact each phase of the cycle. QA ¼ quality
assurance.
inappropriately accelerating AI deployment could result
in mis implementation and impede its potential benefit
to health care. For now, and the foreseeable future, nar-
row AI applications—in which the focus is on using AI to
help solve specific challenges in medical imaging, such as
pneumothorax detection or lung nodule classification—
hold considerably more promise for improving patient
care than general AI applications. Additionally, algorithm
performance need not be superhuman to assist radiolo-
gists in the care of their patients. If algorithm accuracy is
better than the lower end of the radiologist performance
scale, then patients will benefit (Fig. 3).
CHALLENGES, KNOWLEDGE GAPS, AND
INFRASTRUCTURE NEEDS FOR AI
IMPLEMENTATION IN CLINICAL PRACTICE
As with other new technologies that have been translated
from initial research to widespread clinical practice, we
need to recognize that there will be novel challenges for
the clinical deployment of AI tools (Fig. 4).
Understanding the nature of these new challenges,
potential mitigation strategies, and a well-conceived
research road map that ensure that advances in AI algo-
rithm development are efficiently translated to clinical
practice are of paramount importance. Much of the work
4

in AI development is being done at single institutions
with single institution data for training, testing, and
validation of the AI algorithms. A recent review of studies
that evaluated the performance of AI algorithms for the
diagnostic analysis of medical images found only 6% of
the 516 studies reviewed performed external validation
[13], and so far, there is limited research demonstrating
the generalizability of these algorithms to widespread
clinical practice.
PRIORITIES FOR ADVANCING THE USE OF AI
IN MEDICAL IMAGING

Developing Structured AI Use Cases for Medical
Imaging
To date, AI use cases for medical imaging have been
poorly defined, and there is a lack of standardization of
inputs and outputs among comparable algorithms cleared
by the FDA for marketing specific AI applications [4].
Because algorithms may run on the modality itself, on
a local server, or in the cloud (systems that may
eventually host thousands of algorithms), a standard
way of accepting inputs for the algorithm to process
will be required. Without standardized inputs and
outputs for AI use cases, it becomes challenging to develop
standard data sets for training and testing, and in the end,
Journal of the American College of Radiology
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Fig 3. The performance of AI in clinical practice need not be superhuman (AIII) to improve patient care. If AI can perform at a level
better than the lower end of the radiologist performance scale (RAD A and RAD B), then patients will benefit, and the overall
performance curve for radiologist interpretations will be shifted to the right (shown in green), improving on the baseline per-
formance (shaded in red). AI ¼ artificial intelligence; AUC ¼ area under the curve; ROC ¼ receiver operating characteristic.
the resulting algorithms may show different results for the
same finding. Ideally, AI use cases should be developed
using a format that converts human narrative descriptions
of what the algorithm should do to machine readable
language such as Extensible Markup Language or
JavaScript Object Notation using clearly defined data
Fig 4. Although initial applications of user experience AI in
health care are promising, there is currently limited use of
AI in routine clinical practice. Of the challenges faced by
researchers and developers for adoption of AI in clinical
practice, workshop panelists, whose collective opinions are
represented by the bars on the right, considered the lack of
availability of structured data for training, testing, and
validation of AI algorithms; the development of standards for
clinical integration of AI algorithms; and the development of
structured AI use cases for health care AI most important.
AI ¼ user experience; UI ¼ user interface; UX ¼ user
experience.
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elements. Structured AI use cases can create standards for
algorithm validation before marketing for clinical use and
standards for monitoring algorithm performance in clinical
practice [12]. The medical imaging community, including
medical specialties, academic institutions, and individual
radiologists, can positively influence AI development by
participation in the development of these structured use
cases as well as creating the general standards and structure
for AI specific use cases so that AI algorithms can be built
with the same definitions and deployed in clinical practice
in a consistent way.
Common Data Elements
The need for structured data in the form of common data
elements (CDEs) is critical for AI development and its
translation to clinical practice. Using CDEs in AI use case
development ensures AI algorithms perform as expected
across a variety of settings and stems from the changing role
of the radiologist in the modern patient care. Clinical care
has become more data oriented and data driven, and man-
agement of patients after imaging examinations has become
more algorithmic with many being implemented in health
care computer systems such as standard order sets for certain
conditions. In addition, it is also imperative that radiologists
are able to ingest structured information into their reporting
environment. A registry of CDEs is being created [14] for
use in a variety of radiology reporting tools [15,16] and in
AI use case specifications so that algorithms designed for a
similar purpose will be able to integrate the appropriate
5



examination data, create outputs that are standardized, and
present final inferences in similar form and structure so as to
optimally populate structured imaging reports.
Developing Standards and Methods for Data
Curation, Distribution, Sharing, and
Management
There is a significant need for high-quality data sets,
containing appropriate annotations or rich metadata, for
developing high quality AI algorithms that can meaning-
fully reflect desired goals of reliability, reproducibility, and
explainability. Developers are building costly tools for data
extraction, de-identification, labeling, and workflow inte-
gration with each developer potentially creating pro-
prietary assets. The FAIR initiative (making data findable,
accessible, interoperable, and reusable) [17] and the
democratization of narrow AI through available libraries,
relatively small data sets, and cheap access to high-
performance hardware are providing opportunities for a
growing number of researchers and developers to partici-
pate in AI development. However, much of the innovation
continues to be concentrated at “data-rich” organizations,
limiting widespread availability of data. Additionally, pri-
vacy concerns often limit the ability of institutions to allow
protected health information to be shared externally, and
the lack of publicly available data can slow AI development
[18–20]. Accelerating the release of publicly available data
sets and AI techniques such as transfer learning that allow
patient data to remain behind an institution’s firewall
while exposing algorithm training to more diverse data
may be able to help accelerate translation of AI into
clinical practice [21].
Optimizing the User Interface and User
Experience and Advancing Standards for Clinical
Integration and Care Management
The lack of user interfaces (UIs) for bringing in the results of
AI models into the clinical workflow as well as a lack
of efficient user experience (UXs) are limitations to
deployment of AI models for widespread clinical use. An
efficient UI and UX for integration into existing clinical
workflow tools such as PACS, Radiology Information Sys-
tem, and electronic health records will be necessary for
clinical use of AI, and although individual developers will
likely distinguish themselves from one another based on
these interfaces, their development cannot occur without
vendor-neutral interoperability standards for electronic
communication between health IT (HIT) resources. Un-
derstanding the infrastructure needs, including both quali-
tative and quantitative analyses [17,22,23] for AI
6

deployment in clinical practice—either local or cloud-
based—will be critical in allowing use of thousands of AI
algorithms in actual clinical practice. The medical imaging
community must be involved in assessing the clinical and
infrastructure needs and work with existing standards
bodies such as the National Science Foundation and the
NIH Connected Health Initiative [24] to find solutions
that facilitate adoption of AI in clinical practice.
Ensuring Patient Safety and Health Equity and
Developing Efficient Pathways for Safely
Bringing Software Tools to Market
The medical community must work with developers, gov-
ernment agencies, and the public to ensure AI is deployed in
medical practice, such that the end users of the software and
the public can be confident that the algorithm output is
accurate, free of unintended bias, and safe for patients,
including protections from cybersecurity lapses. This means
ensuring that the claims of the AI developers are validated
using novel data sets created using technical and de-
mographic diversity before marketing for clinical practice.
TheUSFDA is chargedwith protecting the public health by
“ensuring the safety, efficacy, and security” of a wide range
of health care products [24,25]. The FDA regulates a broad
array of medical imaging devices as well as computer-aided
diagnosis software and other algorithms that provide
decision-making support to medical practitioners [24]. The
agency recognizes the rapid increase in digitization across
the health care continuum and the importance of
regulating computer software that is able to detect and
classify disease processes and has been issuing regulatory
guidance for software computer-aided detection and
computer-aided diagnosis since 2012 [26]. The FDA is
working with the International Medical Device Regulators
Forum [27] to develop harmonized and convergent
guidance for software as a medical device (SaMD) [28].
One of the outputs of this workgroup is a
recommendation that SaMD should have a clinical
assessment, analytical validation, and clinical validation as
part of the development process. The FDA has adopted
this principle as an important consideration in developing
its upcoming guidance for SaMD [28]. Additionally,
international regulatory collaborations, consistent
international data standards, and methods for data sharing
would also be useful in streamlining the regulatory process
for considering marketing algorithms in international
markets.

The FDA is committed to using real-world evidence
(RWE) to support device pre- and postmarket decisions
and has developed the National Evaluation System for
Journal of the American College of Radiology
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Healthcare Technologies (NEST) program to accelerate
the development and translation of new and safe health
technology to the clinic by leveraging RWE and other
innovative data into the approval and postmarket sur-
veillance processes (Fig. 5) [26]. The NEST is selecting
teams for RWE assessment and value analysis initiatives
including at least one demonstration for SaMD and AI
[29-31]. The FDA is also planning to leverage RWE is
its Pilot Software Recertification Program [32].

There are opportunities for developing partnerships
with the NEST program to help provide the FDA with
RWE. The Medical Device Epidemiology Network is a
global public-private partnership, and it incorporates over
130 partners and over 100 national and regional registries
from 37 countries [33]. Additional public-private part-
nerships are anticipated as well, focused on developing
data registries for monitoring the performance AI algo-
rithms in clinical practice will be developed. Data regis-
tries for collecting clinical practice and quality
information have been used in health care since 1989
[34]. CMS has also advocated for the use of registry
reporting for payment policy decisions (Coverage with
Evidence Development) and the Quality Payment
Program [35]. In radiology, the ACR National
Radiology Data Registry has approximately 4,500 sites
with infrastructure for allowing automated data transfer
using web-based application programming interfaces
(APIs) and data transfer using standards such as Health
Level Seven (HL7) and Fast Healthcare Interoperability
Resources (FHIR) [36]. Registry reporting is facilitated
by structured reporting and the use of CDEs, and to be
Fig 5. The FDA is creating pathways to make the premarket review
Software Precertification Program for premarket review and usin
Healthcare Technologies (NEST) program to make the postmarke
MD.)
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effective for monitoring the performance of AI
algorithms, data collection will need to be as seamless
as possible and will require standardized APIs.
Additionally, an ability to collect appropriate metadata
about the examination, such as examination
manufacturer, examination parameters, and patent
demographics, will be necessary so that the registry can
inform stakeholders about parameters where algorithm
performance did not meet expectations. Reports from
these registries could be useful in developing the real-
world data the FDA is seeking for postmarket surveil-
lance of SaMD (Fig. 6). Creating models for validation
and monitoring of AI algorithms and minimizing
unintended bias will require collaborations between
researchers, industry developers, and government
agencies. The medical imaging community should play
a leading role in facilitating these collaborations.
OPTIMIZING THE MACHINE-HUMAN
INTERFACE: A VISION FOR THE FUTURE
PRACTICE OF DIAGNOSTIC IMAGING
The plethora of information potentially available to ra-
diologists, including pathology data, “omics” data, and
digital information from the electronic health record, at
the time of interpretation is adding increasingly more
complexity to interpretation of diagnostic imaging.
Integration of digital diagnostic information from mul-
tiple sources including medical imaging, pathology, lab-
oratory, genomics, and radiomics is critical for
generalizing advanced informatics tools into all facets of
health care. This will require breaking down data silos, so
process for medical devices more efficient by establishing the
g real-world data through the National Evaluation System for
t surveillance process more robust. (Credit FDA Greg Pappas,
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Fig 6. AI in clinical practice with registry reporting for monitoring with real-world data. Data about algorithm performance are
collected through a structured reporting system, and metadata about the examination parameters are collected in the back-
ground and transferred to various registries including an AI performance monitoring registry. Reports can be provided to all
stakeholders including the radiologist, the facility, the algorithm developer, and regulatory agencies. AI ¼ artificial intelligence;
EHR ¼ electronic health record; UI ¼ user interface; XML ¼Extensible Markup Language.
that a coherent integrated resource ecosystem is created,
and developing a work environment that brings multiple
physician specialties together and combines human
intellect and judgment with AI solutions to enhance our
ability to bring precision and personalized diagnosis into
routine practice. Making data silos available could be
accomplished developing APIs tools that allow complete
integration or more elegantly by AI algorithms that effi-
ciently data mine the disparate resources for applicable
patient-specific information. Catalyzed by the Academy,
this human-machine hybrid system has been conceptu-
alized as the “Diagnostic Cockpit of the Future” [37],
which is a metaphor for a “future-state digital platform
that will aggregate, organize, and simplify medical
imaging results and patient-centric clinical data, helping
clinicians become the ‘diagnostic pilots’ of the future in
detecting disease early, making accurate diagnoses,
driving image-guided interventions, and ultimately
improving the downstream clinical management of pa-
tients” [37]. This fully integrated system will receive
standardized digital inputs from imaging, pathology,
“omics,” and other clinical data extracted from the
electronic health record and house this information in
8

a data storage center available to diagnosticians
throughout the patients’ clinical care. Quantitative and
imaging data from the storage center must be processed
and presented to the human observer in a clinically
useful way for the production of a diagnostic report. AI
solutions are poised to be the tools that will provide
quantitative outputs to the radiologists, pathologists,
and clinical domain experts of the future through
advanced human-machine interfaces.

LIMITATIONS
Although the diversity and expertise of the data science
and clinical and regulatory participants involved in the
workshop was robust, the workshop participants do not
account for the entirety of thought leaders in the field,
and others may have conflicting or additional opinions.
An additional limitation of the workgroup is the speed
that AI in medical imaging is evolving, and as such, the
current state is constantly evolving; our recommendations
could rapidly become obsolete. What is presented in this
road map represents a snapshot of a constantly evolving
field, and additional workshops will be needed to assess
progress and reassess needs.
Journal of the American College of Radiology
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Table 1. Research opportunities and infrastructure development requirements for translating AI for medical imaging from research to routine clinical practice

Area Current State Knowledge and Infrastructure Gap Approach and Methods Needed Comments and Limitations

Software use
cases for AI

AI algorithms are being created
based on use cases developed at
single institutions working with
single developers, limiting
diversity and generalizability to
widespread clinical practice.

Few structured AI use cases are
available for AI development;
algorithm inputs and outputs are
not standardized between similar
use cases; there is a lack of a
registry of Common Data
Elements to inform development
of structured AI use cases.

Leverage the value of radiologists and
radiology specialty societies to develop and
promote widely available structured AI use
cases for AI in healthcare; develop and
promote the use of common data
elements in reporting software and AI
development.

No widespread use of structured
data in current radiologist
reporting practices; incentives
are missing for culture change in
clinical practice.

Data availability Algorithms are being developed
most often with single-
institution data with no evidence
that algorithm outputs will be
generalizable to routine clinical
practice and free of unintended
bias.

Infrastructure changes are needed
to allow availability of distributed
data sets for use in training,
testing, and validating AI
algorithms.

Create data sets for AI training and testing
based on structured use cases so that
similar data sets can be created at multiple
institutions and used centralized or on
premises; ensure geographic, technical,
and patient demographic diversity; develop
directories of annotated data sets for use
by AI developers; create standards for data
use agreements to facilitate data sharing
among organizations.

Establish incentives that promote
sharing, and discourage
exclusivity for partnerships
between developers and
organizations with data and
researchers and developers that
need data.

Ensuring
algorithm
safety and
efficacy before
and after
deployment in
clinical practice

Algorithm validation using data
sets beyond those withheld from
the training data are limited;
pathways for performance
monitoring in clinical practice are
limited or nonexistent.

Embargoed data sets with ground
truth for algorithm validation need
to be developed and used to
evaluate AI algorithms before FDA
clearance; registries for algorithm
performance monitoring are
needed.

Develop efficient pathways for AI algorithm
validation within the FDA premarket
review process; establish robust registries
to monitor algorithm performance in
clinical practice with the ability to collect
technical and demographic metadata
related to the examination.

All stakeholders in the AI
ecosystem will play a role,
including government regulators
for establishing efficient means
for premarket clearance with
reliance on real-world evidence to
monitor the performance of AI in
routine clinical practice.

Standards for
clinical
integration of AI
algorithms

A number of standards for data
transfer and archiving exist, and
additional “standards” may not
be needed; however, determining
which standards will be best for
establishing interoperability for
AI algorithm integration has not
occurred.

Identification and use of the proper
standards for AI interoperability
have not occurred; no standard
APIs exist for integration of AI
output data into existing HIT
resources such as the PACS and
EHR.

Develop recommendations for identifying
proper standards for AI interoperability;
develop APIs for AI integration that can be
used by all researchers and developers to
integrate AI algorithm outputs into the
clinical environment.

The AI ecosystem community
should be involved in promoting
efforts to standardize
interoperability and work with
government agencies, including
FDA, NIST, and CMS, to develop
pathways and incentives to
ensure interoperability of AI.

AI ¼ artificial intelligence; API ¼ application programming interfaces; EHR ¼ electronic health record; HIT ¼ health information technology; NIST ¼ National Institute of Standards and Technology.
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CONCLUSION
A summary of challenges and recommendations from the
workshop are summarized in Table 1. At this time,
fundamental questions regarding translating AI research
to routine clinical practice remain unanswered. The road
map begins with a needs assessment for what should be
built. Developers are currently tasked with having to
build costly tools for data extraction, de-identification,
labeling, and workflow integration with each developer,
potentially creating proprietary assets, which one work-
shop presenter indicated was akin to “the challenge of
mining for gold when you have to start by building a
mining pick” [8]. Open-source interoperability standards
and resources should be defined and developed for how AI
algorithms should be built so that these algorithms can be
integrated into HIT resources, and methods should be
developed for validating AI algorithms and monitoring
their performance in clinical practice. Determining the
most pressing clinical needs and then determining which of
those needs are amenable to AI solutions will be essential to
advancing AI practice. Prioritizing use cases for AI is not
just determiningwhether an algorithm can be built but also
determining whether it should be built, which should
ideally include a cost-benefit analysis. Themedical imaging
community should describe exactly what is important to
radiology and what we think data scientists, including re-
searchers and developers, could do to improve patient care.
Those descriptions should go beyond narratives and
flowcharts. Human language should be converted to ma-
chine readable language using standardized data elements
with specific instructions for standard inputs, relevant
clinical guidelines that should be applied, and standard
outputs so that inferences can be ingested by downstream
HIT resources.

Structured use cases allow training and validation data
sets to be built using the same standards, and data sets
from multiple institutions can be aggregated for training,
either centralized or distributed, to reduce unintended
bias and optimize generalizability of algorithms to clinical
practice as well as create robust data sets for algorithm
validation. Because there are standardized inputs, algo-
rithms may run on the modality itself, on a local server, or
in the cloud, and systems that may eventually host
thousands of algorithms will need a standard way of
accepting inputs for the algorithm to process. Because the
outputs of the algorithm are presented in a standardized
way, APIs can be developed that will allow AI integration
into any system or electronic resource. Finally, structured
use cases should have specifications for data that should
10
be collected to inform the developer about the perfor-
mance of the algorithm in actual clinical use. Under-
standing performance variances that occur in different
patient populations, across different equipment
manufacturers, or using different acquisition protocols
can then be used to refine the algorithm, modify the
use case specifications, or inform regulatory agencies.
Implementation strategies should also promote payment
models that promote health equity so that improvements
to care afforded by AI applications will be available to all
patients regardless of their socioeconomic status or the
resources of their health care facilities. The future for AI
applications for improved diagnosis in general and for
image-based diagnosis is enormous. The opportunities
and challenges summarized here can serve as a guidepost
and road map for future development.
TAKE-HOME POINTS
- Translating foundational research in AI for medical
imaging to routine clinical practice is dependent on
defining the clinical need for AI tools, establishing
methods for data sharing while protecting personal
health information, ensuring AI algorithms will be
safe and effective in routine clinical practice, and
ensuring standards for implementing AI tools into
routine clinical workflows.

- An active AI ecosystem in which radiologists, their
professional societies, researchers, developers, and
government regulatory bodies can collaborate,
contribute, and promote AI in clinical practice will
be key to translating foundational AI research to
clinical practice.

- AI tools will be a critical driver of a future practice
state in which AI tools have provided radiologists
and other diagnosticians access to a wealth of in-
formation that will inform more accurate diagnoses
and identify patients at risk for significant illness.
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