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A neuro-inspired artificial peripheral nervous system for
scalable electronic skins
Wang Wei Lee1,2, Yu Jun Tan1,2, Haicheng Yao1, Si Li1,2, Hian Hian See1, Matthew Hon3,
Kian Ann Ng4, Betty Xiong1, John S. Ho2,4,5, Benjamin C. K. Tee1,2,3,4,5*

The human sense of touch is essential for dexterous tool usage, spatial awareness, and social communication.
Equipping intelligent human-like androids and prosthetics with electronic skins—a large array of sensors spa-
tially distributed and capable of rapid somatosensory perception—will enable them to work collaboratively and
naturally with humans to manipulate objects in unstructured living environments. Previously reported tactile-
sensitive electronic skins largely transmit the tactile information from sensors serially, resulting in readout latency
bottlenecks and complex wiring as the number of sensors increases. Here, we introduce the Asynchronously Coded
Electronic Skin (ACES)—a neuromimetic architecture that enables simultaneous transmission of thermotactile
information while maintaining exceptionally low readout latencies, even with array sizes beyond 10,000 sensors.
We demonstrate prototype arrays of up to 240 artificial mechanoreceptors that transmitted events asynchronously
at a constant latency of 1 ms while maintaining an ultra-high temporal precision of <60 ns, thus resolving fine
spatiotemporal features necessary for rapid tactile perception. Our platform requires only a single electrical con-
ductor for signal propagation, realizing sensor arrays that are dynamically reconfigurable and robust to damage.
We anticipate that the ACES platform can be integrated with a wide range of skin-like sensors for artificial intel-
ligence (AI)–enhanced autonomous robots, neuroprosthetics, and neuromorphic computing hardware for dexter-
ous object manipulation and somatosensory perception.
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INTRODUCTION
Electronic skins (e-skins) are essential for sensing human-machine-
environment interactions, with applications in advanced collaborative
anthropomorphic robots (1) and neuroprosthetics (2–4). To perform
the sensing, e-skins typically consist of numerous tactile sensor ele-
ments distributed over a large area substrate that is preferably soft (5),
conformable (6), stretchable (7–10), and lightweight (11). Similar to
biological skins, the ideal e-skin should be highly responsive and ca-
pable of resolving millisecond-precise tactile stimuli to facilitate rapid
discrimination (12, 13). This enables emerging dexterous robots the
ability to react quickly to highly localized and transient contact events,
such as a prick from a needle or slippage of an object. The sensors of
the ideal e-skin should also readily scale to thousands in number and
be distributed with variable spatial densities depending on the sensing
needs while having minimal wiring requirements (14). Furthermore,
an e-skin that remains functional while being subject to physical harm
enables continuous sensor feedback for safe robotic motor controls
and decision making. Although several pioneering efforts have been
made to achieve some of these desirable traits, there is currently no
technology that encompasses all of the stated attributes.

Onemajor reason is because a vast majority of tactile sensor arrays
are currently interfaced via time-divisional multiple access (TDMA),
where individual sensors are sampled sequentially and periodically to
reconstruct a two-dimensional (2D) map of pressure distribution. Al-
though the serial readout nature of TDMA allows conductor traces to
be shared across multiple sensors, which simplifies the wiring of large
arrays, it consequently leads to a decline in readout rates as the num-
ber of sensors in the array increases. Existing solutions to boost the
sampling rate of TDMA-based e-skins include use of high-speed
electronic components (15, 16), intelligent subsampling (17), and data
compression techniques (18). Unfortunately, such approaches present
challenges to scaling to the thousands of sensors needed to sensorize
large exterior areas of a robot and may necessitate impractically large
amounts of computation and power (16). Similarly, intelligent sampling
and data compression techniques often depend on having a priori
knowledge of the tactile stimuli, which limits broad applicability.

A promising alternative to TDMA is event-based signaling. Unlike
TDMA, event-based sensors are not periodically polled by a central
electronic controller. Instead, data are transmitted by individual sensors
only when necessary (19, 20), similar to biological mechanoreceptors.
By capitalizing on the temporal sparsity of tactile signals, event-based
representations of touch have been shown to use the available commu-
nication bandwidth more effectively in comparison with TDMA-based
solutions, thus yielding shorter readout latencies (16, 20, 21). Somevision
and auditory sensors have also applied such event-driven approaches
(22) using asynchronous protocols such as Address Event Representa-
tion (AER) (23). However, these systems requiremonolithic integrations
of numerous electrical traces on silicon substrates, which are challenging
to do for large-area, distributed skin-like sensing using flexible and
stretchable substrates. Hybrid event-based packet forwarding methods
are an interesting approach (16, 20), but such data packets require time
stamping and rearrangements at the receiver because they are transmitted
using communication protocols that do not guarantee fixed latencies.

Moreover, e-skins are expected to make frequent physical contact
with the environment. Thus, it is imperative for the e-skin system to
withstand mechanical damages, such as abrasion and cuts, with min-
imal loss of functionality or repair downtime. The typical n × m sen-
sor matrix (n, rows; m, columns) has limited mechanical robustness
because mechanical damage to the electrical trace would disable all the
transducers on the entire row/column. Recognizing this limitation,
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researchers have introduced alternate architectures with redundant
components and connections to improve damage resilience of e-skins
(24, 25). For instance, sensor nodes configured in a mesh network can
reconfigure their routing tables to avoid damaged connections (24).
However, individual nodes in such a network require sufficient com-
putational power to handle the overhead of data packet routing and
damage repair protocols, thus constraining the level of miniaturization
possible. Reconfiguration of larger networks will also incur substantial
downtime, potentially impairing sensing when it is needed the most
(e.g., during damage events).

In contrast, the human somatosensory system overcomes many of
these limitations by coupling action potential signal representations
with extensive arrays of nerve fibers in the peripheral nervous system.
The ultra-high density of nerve bundles allows mechanoreceptors to
use dedicated bioelectronic pathways to the somatosensory cortex (26).
In this manner, the latency of human somatosensory system is largely
invariant with the number of receptors in the body and limited only
by the propagation speed of action potentials or “spikes” (12). When
responding to tactile contact events, mechanoreceptors asynchronously
transduce ensembles of spikes that represent information through
spatiotemporal patterns (12, 13). Unlike TDMA, these spikes are
propagated in parallel to the somatosensory cortex (Fig. 1, right) with
submillisecond resolution (12). Tactile information is conveyed in a
myriad of ways, including spike frequency, spike latency, and phase
(27). Damage resilience is excellent because the connections are physi-
cally discrete and unaffected by the loss of a particularmechanoreceptor
or its axon, enabling continuous functionality of the rest of the system.

Inspired by the human nervous system and motivated by the
limitations of existing e-skin technology, we developed a new commu-
nication architecture for e-skins that can support thousands of spatial-
ly distributed sensors, each capable of asynchronous transmission that
requires only a single common conductor for signaling. We term this
platform Asynchronously Coded Electronic Skin (ACES). By using a
spread spectrum technique, ACES enables an artificial electronic ver-
sion of the peripheral nervous system for e-skins by multiplexing
signals from many sensors to a single receiver (Fig. 1, left).

In ourACESplatform, each sensor, referred to as anACES “receptor,”
captures and transmits stimuli information asynchronously as “events”
using electrical pulses spaced in time (Fig. 1A and fig. S1A). The temporal
arrangement of the pulses, which we refer to as an ACES pulse signature,
is unique to each receptor. The spread spectrum (28) nature of the pulse
signatures permits multiple sensors to transmit without specific time
synchronization, propagating the combined pulse signatures to the de-
coders via a single electrical conductor (Fig. 1B). The ACES platform is
inherently asynchronous due to its robustness to overlapping signatures
and does not require intermediate hubs used in existing approaches to
serialize or arbitrate the tactile events (19, 20). The ACES signature was
designed to be transmitted in 1 ms, similar in duration to a biological
action potential (12). At the receiving end, the decoder identifies the
transmitting receptor by correlating the received pulses against the
known temporal arrangement of pulses for each receptor’s signature.
An event from a particular receptor was deemed to be detected if the
number of matched pulses exceeded predefined thresholds (Fig. 1C).
RESULTS
Performance of ACES signaling scheme
To replicate the functional role of the biological nerve, the ACES sig-
naling scheme is capable of propagating pulse signatures (events) from
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
thousands of ACES receptors while preserving the relative time differ-
ences between the events. To demonstrate the concept, we developed a
prototype system using off-the-shelf components to characterize the
performance of ourACES communication architecture (Fig. 2A). Using
a physical network of 240 ACES receptors, we established that the tem-
poral resolution, defined as the minimum resolvable time difference be-
tween two pulse signatures, is <60 ns (Fig. 2B). The transmission latency
is also constant, dependent only on the duration of the pulse signature
and, importantly, not on the number of receptors. An exceptionally
high temporal precision is potentially achievable even for arrays with
>10,000 sensors (fig. S1B), despite an increase in temporal uncertainty
with an increasing number of overlapping pulse signatures (Fig. 2B),
determined using SimulationProgramwith IntegratedCircuit Emphasis
(SPICE) simulations (see Materials and Methods).

To establish the reliability of ACES signaling, we observed that by
using a decoder threshold of 6 for signatures with 10 pulses (W = 10),
a false positive probability of 2.3 × 10−5 and missed detection prob-
ability of 3.1 × 10−4 could be achieved even with 240 pulse signatures
overlapping temporally (Fig. 2C). UsingMonteCarlo simulation, which
realistically predicts the performance of our experimental prototype
(fig. S1C), we further show that false positive and missed detection
probabilities increased to 2.4 × 10−2 and 2.1 × 10−3, respectively, for
1000 overlapping pulse signatures (Fig. 2C). However, the likelihood
of signatures overlapping in the thousands was estimated to be rare be-
cause of the known sparse nature of tactile stimuli (13, 20). Moreover,
we could further improve decoding accuracy by an order of magnitude
when the duration of the voltage pulses was halved (Fig. 2D), character-
ized using the decoded signal-to-interference ratio (DSIR) metric (see
Materials and Methods). In addition, we observed that, although larger
values of pulse signature weight (W) improved DSIR for <100 over-
lapping signatures, the opposite was true if a high amount of signature
overlap was expected (Fig. 2E). Hence, a value ofW = 10 appears to be
optimal from our experiments.

A major concern of electronic communications in real-world
scenarios is the reliability of the system when exposed to electro-
magnetic interference (EMI). Hence, we evaluated the effects of two
common sources of EMI on ACES: (i) the 13.56-MHz band from
radio frequency identification (RFID) devices and (ii) the 2.4-GHz
band from Wi-Fi, Bluetooth, and microwave ovens. Using only basic
shielding, the effects of 13.56-MHz waves did not significantly impair
the signal quality of ACES (fig. S1D). Similarly, the EMI of 2.45-GHz
waves had little effect on signal quality (fig. S1E). This is also expected
given that 2.45-GHz frequency is beyond the bandwidth of the oper-
ational amplifier used. Thus, ACES can function reliably in real-world
scenarios without the need for extensive shielding.

Neuromimetic tactile representations using ACES
The ACES signaling scheme is uniquely suitable for encoding bio-
mimetic somatosensory representations (13) because it can propagate
the sparse stimuli events from numerous receptors with high temporal
precision. We designed a set of biomimetic models using our ACES
platform tomimic the fast-adapting (FA), slow-adapting (SA), and tem-
perature afferents by integrating flexible tactile and temperature sensors
that communicate through ACES pulse signatures (Fig. 3A). Similar to
their biological counterparts (13), ACES-FA receptors respond only to
dynamic skin deformations (fig. S2A, see Materials and Methods for
details) but are insensitive to static forces, whereas ACES-SA receptors
respond to static pressure by producing events at frequencies that in-
creases with greater force amplitudes (Fig. 3B and fig. S2B).
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The ACES-SA receptors enable accurate reconstruction of applied
forces by extracting the inter-event intervals (Fig. 3B). However,
ACES-SA receptors alone could not accurately reproduce transient
stimuli, such as a prick from a lancet lasting 1 ms, because the stim-
ulus duration was below the interval needed to encode the force in-
tensity. Instead, we reliably detected the applied impulse using the
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
ACES-FA receptors because they transmit events immediately due
to an increase (FA+) or decrease (FA−) in pressure. Our system allows
for ACES-FA receptors to also encode for a decrease in stimuli mag-
nitude, as opposed to biological FA receptors that do not discriminate
between increase or decrease in force (12). However, ACES-FA output
may not accurately track pressure intensities due to the dynamic nature
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of the threshold used (Fig. 3B and fig. S2A). Combining both FA and SA
behaviors, e-skins based on ACES have the versatility to react to a wide
temporal range of tactile stimuli.

To demonstrate a multimodal sensing e-skin using ACES, we
developed an e-skin integrated with flexible pressure- and temperature-
sensitive transducers (Fig. 3C and fig. S2C). We used pressure trans-
ducers that have heterogeneous transduction profiles by altering the
Young’s modulus of microstructured elastomers (29). This increased
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
thedynamic rangeof pressure trans-
duction (fig. S2, D to F).We also de-
signed resistive temperature sensors
that are most sensitive between 20°
and 50°C (fig. S2,G andH),which is
similar to the cold receptor affer-
ents in human skin (30). Akin to
biological cold receptors, our ACES
thermoreceptor transmitted events
at a reduced frequency as the sur-
rounding temperature rose above
25°C (fig. S2I).

Combining both transducers on
a single sheet of flexible substrate,
we show that our ACES platform
could perform simultaneous multi-
modal sensing. We demonstrate
that, when an ACES-equipped pros-
thetic hand grasped a hot cup of
coffee, simultaneous detection of
thermotactile sensations could be
achieved (Fig. 3, C to F).

Slip detection via
spatiotemporal ACES events
The ability to preserve the spatio-
temporal profile of tactile stimuli
allows rapid detection of object
slippage, which is essential for
grasp stability during in-hand ob-
ject manipulation (31). Inspired
by the simplicity and computation-
al efficiency of optical flow algo-
rithms in event-based vision sensors
(32), we implemented a spiking con-
volutional network that computes
the magnitude and direction of
slippage in an event-drivenmanner
(Fig. 4A). As an object is pulled out
of grasp, ACES-FA receptors are
triggered in particular spatiotem-
poral sequences that could indicate
the onset of slippage. By comparing
each receivedeventwithother events
correlated in space and time (seeMa-
terials and Methods), our network
obtained movement estimates im-
mediately upon slip onset and ac-
curately identified the downward
movement of the object (Fig. 4B).
The system was also capable of de-
tecting the slippage of a needle with minimal latency (Fig. 4C). Despite
the fair accuracy of the speeds derived compared with a high-speed
camera, the spike timing patterns can indicate and enable control
systems to react with low latencies (<10 ms).

Speed and force invariant classification of texture
Humans typically recognize surface textures by sliding their fingers
over them laterally. Studies suggest that the humans can discriminate
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replicate in robotic tactile sensing because controlled tangential speeds
are needed to derive stable frequency-based descriptors (21, 34, 35).
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We propose that our motion estimation technique (Fig. 4A) can
be applied to improve texture recognition when sliding speeds are
inconsistent.
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We constructed a dataset by sliding an array of ACES-FA recep-
tors over gratings of various spatial density by hand, thus ensuring
that the sliding speed and normal forces varied within and between
trials (Fig. 5, A and B). This substantially increased the problem
complexity, because the variability in tangential speed meant that
a larger grating pitch did not always trigger receptors less frequent-
ly (Fig. 5B). Next, we extracted frequency component information
by compiling the distribution of ACES-FA event time intervals into
a feature vector for classification by a neural network (see Materials
and Methods). Our event-based motion estimation technique was
also used to approximate the tangential speed of the recording. We
observed that discriminating between the grating sizes was about
14% more accurate when the estimated tangential speed was included
as a feature (Fig. 5C). The improvement agrees with our expectation,
because the approximated sliding speed tracked the actual speed fairly
well. In addition, we observed a decrease in recognition performance
from 88 to 50% when temporal resolution of the events decreased
from 1 to 40 ms, indicating the importance of having tactile sensors
with high temporal fidelity. The sparsity of the ACES-FA representa-
tion allowed for exceptional timing precision while consuming only a
fraction of the data rates produced by a comparable frame-based im-
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
plementation (Fig. 5D). Moreover, frequency domain information was
derived directly from the inter-event time intervals, unlike frame-
based systems where complex operations such as Fourier transforma-
tions are typically required (36).

Rapid perception of local curvature and object hardness
Dexterous manipulation tasks often necessitate the ability to swiftly
perceive object local curvature and hardness from mechanosensory
stimuli. In humans, manipulation tasks are typically executed as ac-
tion phases delimited by mechanical contact events (13). Meissner
corpuscles, with their FA responses of submillisecond precision, play
a crucial role in rapid and reliable contact classification to ensure
seamless transitions between action phases. Using an array of 69
ACES-FA receptors (Fig. 6A) coupledwith a spike-based classification
technique (see Materials and Methods), we demonstrated the ability
to classify various local curvatures up to 10 times faster (<7ms for 97%
accuracy) than a 100–frame per second (fps) conventional sensor
array (Fig. 6, B andC). Amarked improvement in classification speed
was also observed when the ACES-FA receptor output was used to
distinguish geometrically identical shapes of different hardness
(Fig. 6, D to F). Our results highlight the importance and effectiveness
 by guest on July 20, 2019
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of temporal features in rapid tactile discrimination, which concur
with earlier studies in both biological and artificial somatosensory
systems (12, 37).

ACES enables flexible arrangements of sensor array
Wiring simplicity in e-skins is critical, especially when routing wires
along nonuniform surfaces or curvatures. Our ACES pulse–based
communication approach markedly simplifies the problem because
it allows signals from all receptors to be transmitted through a single,
common electrical conductor. Here, we demonstrate nine ACES-FA
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
receptors that could be dynamically rearranged to form multiple
spatial formations as long as contact with a sheet of conductive fab-
ric was maintained (Fig. 7). Thus, our ACES platform enables high-
ly irregular sensor arrangements that accommodate nonuniform
geometries.

Robustness of ACES networks to physical damage
E-skins are vulnerable to wear and tear because they constantly rely
on physical contact to sense the environment. Our ACES platform
enables sensor arrays to have high signaling redundancy when
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interfaced to a common electrical conductor, which translates to ex-
ceptional robustness against physical damage.We exemplify this level
of resilience by showing that an array of 16 ACES-SA receptors re-
tained full functionality even when the substrate was cut at multiple
sites (Fig. 8, A and B, and movie S1). In comparison, a conventional
row-column multiplexed tactile sensor array experiencing similarly
large damage could not sense at most locations (Fig. 8, C and D,
and movie S2). Unlike network-based approaches (24), ACES net-
works do not require reconfiguration when damaged and hence expe-
rience zero down time (movie S1).
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DISCUSSION
ACES is designed to be a communication technique analogous to
nerve bundles in biological skin. Toward this goal, our ACES elec-
tronic peripheral nervous system architecture presents several advances
in e-skin technology. First, ACES uses a novel spread-spectrum tech-
nique to asynchronously multiplex signals from a large number of
transducers while achieving near-constant latency despite increasing
the number of transducers. Therefore, larger, full-body e-skins with
thousands of spatially distributed sensors can be realized without com-
promising system responsiveness to stimuli.

Second, being event based, our ACES platform enables tactile
signals to be captured with ultra-high temporal fidelity, because the
sampling time is not constrained to a central “clock.” This enables pre-
cise time recording of tactile events that enable rapid slip detection
and shape and material hardness classifications and also provides
movement estimates that enhance speed-invariant texture discrimina-
tion. Third, ACES allows signals from all receptors to propagate via a
single shared conductor, empowering roboticists and sensor system
designers with outstanding levels of flexibility when spatially arranging
sensors on the e-skin. Furthermore, the high redundancy of physical
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
connections when a planar conductor is used ensures damage robust-
ness of ACES sensor arrays—the system is shown to operate un-
interrupted even when multiple mechanical cuts were being made
to the substrate.

Having tactile signals that are millisecond precise may appear
excessive and unnecessary, especially if the time frames for physical
motion of the intended robot are not particularly fast. However, re-
cent works in both biological and artificial tactile sensing have shown
that significantly more information is present in the temporal do-
main of tactile signals than the rate of movement suggests (12, 13).
For instance, vibratory signal above 100 Hz are often used to char-
acterize slip events (15), whereas the high-frequency signal compo-
nents generated when sliding tactile sensors over surfaces typically
describe texture (21, 38). In the human skin, there are specialized
mechanoreceptors that respond to transient stimuli from 50 to
500 Hz (13). Therefore, harnessing tactile signals with millisecond
precision will enhance texture recognition and dexterous manipula-
tion capabilities while ensuring safety in human-robot interactions.
Moreover, the event-based nature of ACES allows e-skins to achieve
impressive temporal resolutions at a fraction of the data rates needed
by existing systems.

ACESappears tohave similaritieswithAER,which is an asynchronous
protocol used in neuromorphic devices (23). However, ACES and AER
are fundamentally dissimilar and serve different niches. First, AER is a
point-to-point protocol, simulating a network of interconnected neu-
rons. Events from a neuron are routed to another particular neuron
by matching the address with a routing table. It is thus possible to have
bidirectional communication in AER. Conversely, ACES is a many-to-
one protocol, where there is only one receiver in the network. Therefore,
information can only flow from the sensors to the receiver. ACES is thus
more suitable for sensing applications, whereas AER may be used in
both sensing and computational networks.
 by guest on July 20, 2019
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Second, AER is time multiplexed, and arbitration is necessary to
ensure proper sharing of the address bus. Most implementations
use flow control to ensure that the receiver is ready to receive the next
event. AER thus have very low transmission error rates but require
additional logic for arbitration and handshaking. Most systems today
use field programmable gate arrays (FPGAs) for AER interfaces, which
leads to larger and more complex devices. In contrast, ACES can “fire-
and-forget” with no need for any arbitration or flow control. However,
ACES is not error free, and one potential disadvantage is that it is im-
possible for the transmitter or receiver to knowwhether a loss of sensing
event has occurred. Nevertheless, the simplicity of ACES enables sim-
ple transmitter implementations and exceptional timing precision of
stimuli events. Tiny sensor nodes embedded in elastic substrates can
be used to implement theACES platform at relatively high density and
sensing speed, which are especially important for e-skin applications
where real-time motions and mechanical compliance are critical.

Third, most implementations of AER require numerous wires to
realize, from four wires per sensor in serial AER (39) and up to 32 wires
in parallel AER (40). Although this enables AER systems to have supe-
rior throughput (typically millions of events/s) compared with ACES
(hundreds of thousand events/s), it requires high-density interconnects
fabricated in silicon. For e-skins, replicating such patterns over large
areas on flexible and stretchable substrates remains impractical. There-
fore, in e-skin applications, our ACES’s single-shared conductor ap-
proach is highly desirable.

Last, our ACES platform can complement AER, rather than being
mutually exclusive. For example, we can describe ACES as the nerve
bundles from mechanoreceptors (sensors) to the spinal cord (commu-
nications bus), where events received can then be transported via AER
from the spinal cord to the brain (central microprocessor) of the robot.
Such a hierarchy permits compliant and damage robust e-skin patches
to be wrapped over the exterior of the device, complemented by high-
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
throughput AER networks at the robot interior where the use of rigid
components are more palatable.

The use of one microcontroller per receptor in current prototypes
is currently more complex when compared with n × m type cross-bar
sensor arrays, inevitably imposing upper limits to the network in
terms of spatial density and power savings. However, similar limita-
tions apply to any sensor array that uses local computation and com-
munication. For instance, Roboskin (41) on the iCub has 12 elements
per 390-mm2 triangular tile (32.5 mm2 per receptor), whereas Hex-o-
skin (42) has 3 elements per 665-mm2 module (221 mm2 per recep-
tor). With a density of 9 mm2 per receptor (fig. S3A), ACES compares
favorably with the aforementioned systems in terms of achievable spa-
tial density.

Our prototype consumes about 7 mW per receptor at 3.3 V (see
Materials and Methods). Similar e-skin architectures consume from
0.2 to 55 mW per sensor (41–43). It is important to note that our
reported power consumption should be seen as an upper bound, be-
cause these microcontroller-based prototypes were meant to be an early
demonstration of ACES using off-the-shelf components. We anticipate
smaller-sized receptors with much lower power consumption to be
achievable through the use of application-specific integrated circuitry
(ASIC). ASICs each representing several ACES receptors per chip are
another viable option for regions of e-skin where extremely high den-
sities of receptors are desirable.

A key benefit of ACES-enabled e-skins is the unique combination
of high mechanical robustness and wiring simplicity. The damage ro-
bustness of an ACES network stems from the physical redundancy of
connections from each receptor to the receiver. When a planar con-
ductor, such as a conductive fabric or stretchable electrodes, is used to
link the receptors to the receiver, each receptor has multiple direct
connections to the receiver. The ACES sensor network thus retains
full functionality as long as there exists at least a physical connection
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between each receptor to the receiver. Damage to the conductive
substrate can be interpreted as merely a change in the shape of the
substrate and will not affect the system functionality (movie S1).

The fire-and-forget nature of ACES pulse signatures also ensures
that individual receptors are plug and play. Multiple patches of ACES
e-skins are easily combined by connecting the substrates together.
Similarly, gross damage that disconnects several receptors from the
system will not affect the functionality of the remaining intact con-
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
nected network. Although the receiver may not immediately realize
the loss of the disconnected receptors, additional protocols built on
top of ACES can be implemented to identify missing receptors. For
instance, disconnected SA receptors may be detected if no signatures
from these receptors are received after a specified timeout period. The
most severe damage that could occur would be the shorting of the
signal carrier to the supply voltage or ground traces, which would
render the entire network inoperable. This affects any other wired
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communication systems, and the vulnerability could be minimized
through proper design of the system encapsulation.

The assembly of thousands of microcontrollers in a network may
appear to be complex in comparison with n ×mmatrix–type sensor
arrays. Although this is true for rectangular and uniformly distributed
sensor arrays, the complexity of fabricating matrix-type arrays rapidly
increases if stretchable e-skinswith nonuniformdensities are desired. In
contrast, the bulk of the manufacturing complexity for ACES-based
networks is the assembly of common electronic components, for which
established volume manufacturing processes are available. Hence, in
terms of manufacturing complexity, ACES-based networks can be im-
plemented more conveniently for e-skins with nonuniform shapes and
densities.

The mechanoreceptor models implemented in this paper are rel-
atively simplistic when compared with the more sophisticated bio-
logical models reported (44). However, our goal is not to reproduce
biologically accurate tactile responses but to capitalize on ACES’s high
temporal resolution for efficient information transfer. ACES events,
similar to biological action potentials, are slow to propagate individu-
ally (1 ms), but these events can be propagated in parallel. If each event
were to represent a single bit of a digitally encoded resistance value, it
would require eight events (assuming 8-bit resolution) to be trans-
mitted consecutively, resulting in an 8-ms latency. Theoretically, this
latency can be reduced to 2.015 ms using ACES-SA encoding, where
two events spaced 15.36 ms (60 ns × 256) apart effectively encode the
same 8-bit resistance value. Moreover, current research efforts suggest
that classification tasks can be rapidly performed even without knowl-
edge of actual pressure values by relying on relative time differences of
events from a population of receptors (12, 13, 37). ACES-FA encoding
is designed to meet these requirements. Nevertheless, the programmable
nature of individual ACES receptors ensures that receptor models with
increased efficiency and/or biologically relevant mechanoreceptor out-
put can be simulated in the future.

By using our ACES architecture, one potential disadvantage is the
increase in computational complexity required in the receiver/decoder.
Similar to the human brain, concentrating power-hungry operations at
the receivermakes practical sense, because this design allows the sensors
(transmitters) to be realized with low-cost and low-power hardware.

In summary, our neuro-inspired ACES platform enables highly
scalable and ultra-fast somatosensory perception, with damage ro-
bustness and sensor placement flexibility that rival wireless solutions.
We anticipate that our ACES architecture will help advance human-
machine-environment interactions for autonomous anthropomorphic
robots (2), naturalistic embodiment of neuroprostheses (2, 4, 45), high-
performance brain-machine interfaces (46, 47), and soft machines (48).
MATERIALS AND METHODS
Objectives and study design
Our objectives were to show that (i) the ACES architecture have the
capacity to multiplex asynchronously transmitted events from nu-
merous sensors and reconstruct the output at the receiver and (ii) the
high temporal resolution of tactile events afforded by our technique can
be uniquely applied to solve various challenges in e-skin applications.

Design of ACES pulse signatures
We designed a set of electrical voltage pulse codes that can be
asynchronously added with a low probability of false decoding.
Each pulse signature consists of W voltage pulses spaced apart at
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
specific time instances t = {t1, t2,… tw–1}. At the receiving end, pulses
are received at time instances t′ = {t1′, t2′ … tv′}. The decoder finds
the intersection T = (t ∩ t′) where the cardinality |T| denotes the cor-
relation strength. If |T| exceeds a predefined decoder threshold, then
an event is deemed to have been received (Fig. 1C).

An ideal set of pulse signatures is one that has minimal auto-
correlation and cross-correlation. There should also be enough unique
signatures in the set to identify all receptors in the array. A family of
pulse signatures may be characterized by three parameters: F, the
maximum number of voltage pulses that fit within the duration of
a signature;W, the weight or the number of pulses per signature; and
L, the maximum allowable interference (autocorrelation and cross-
correlation) between two signatures.

For a pulse signature with a duration of Ts = 1 ms with voltage
pulses lasting Tp = 100 ns each, the maximum number of voltage
pulses that fit within the duration of a signature is calculated as follows

F ¼ Ts
Tp

¼ 10;000

ParametersW and L are closely related to the error performance of
the decoder. Under ideal conditions, all W voltage pulses from the
target signature should match the template; thus W is the maximum
signal strength. L is the maximum interference (cross-correlation)
allowed between signatures of the same family. If N nontarget signa-
tures overlap, the amount of interference could be as high as N × L.
Error performance will thus degrade if N × L is much larger than W.

There needs to be as many unique pulse signatures as there are
ACES receptors. To accommodate for the thousands of ACES re-
ceptors, the pulse signatures used in this paper have L = 2 such that
the number of signatures (C) will follow the inequality (49)

C ≤
ðF � 1ÞðF � 2Þ

WðW � 1ÞðW � 2Þ

Therefore, with F = 10,000 and W = 10, the array could accom-
modate up to 138,847 receptors, which should be sufficient for whole-
body robot sensor skins (50). Several techniques for finding these
codes have been documented (51).

The voltage pulses in a pulse signature can either be positive or neg-
ative, which allows each signature to take on several variants. For in-
stance, ACES-FA receptors use two variants of the same signature to
indicate an increase or decrease in pressure.

Implementation of an ACES receptor array
Each receptor consists of a resistive sensor, a microcontroller, and sev-
eral passive components to perform signal conditioning (Fig. 2A). A
potential divider circuit converts sensor resistance to voltage values.
The voltage is then sampled at 10 KHz with 10-bit resolution by the
analog-to-digital converter (ADC) on the ATtiny20 microcontroller
(Microchip Technology, United States). The values are sent to firmware
models to mimic the fast (FA) or slow (SA) adaptation behavior of
receptors found in the human skin.

The ACES-FA model generates an event whenever a measured
voltage has changed more than 50 mV since the last transmitted event.
A positive/negative pulse signature is transmitted for a pressure in-
crease/decrease event, respectively. After transmitting the event, a new
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voltage baseline is set (fig. S2A). Tomimic SAmechanoreceptors, the
model generates events at intervals proportional to the 8-point aver-
aged ADC value. For Fig. 3, each bit corresponds to a 100-ms interval.
Together with a 1-ms pulse signature duration, a maximum ADC
value of 1023 will correspond to a 103.3-ms interval between events.
Receptors with the SA-mimicking model only transmit positive ver-
sions of the pulse signature.

The pulse signature is generated by toggling a digital pin at specific
time intervals. A capacitive high-pass filter is used, ensuring that only
the high-frequency components of the signal are transmitted, in the
form of voltage pulses (fig. S1A). An inverted summing circuit, con-
structed using an OPA354 operational amplifier (Texas Instruments,
United States) is used to combine pulses from the multiple receptors.
The resultant signal is digitized with 8-bit resolution at 125 MHz using
an oscilloscope (PicoScope 3406D). Decoding is performed offline
(MATLAB). Voltage thresholds V+ and V− (fig. S1A) are heuristically
defined in software to be 40% of the amplitude of a single pulse, above
and below 0 V, respectively. We found this to reliably distinguish a
pulse from background noise.

For the purpose of controlled experimentation, we developed a
modular prototype system consisting of a board with 80 ACES re-
ceptors. The transducer arrays, namely, a flexible 80-element transducer
for slip detection and grating classification (Fig. 3C and fig. S3B) and a
rigid 69-element transducer for local curvature and hardness classifi-
cation (Fig. 6A and fig. S3C), are separate entities that can be attached
to the board for data collection. An additional prototype of 25 recep-
tors connected by serpentine interconnects (fig. S3A) was also devel-
oped for the purposes of movie S1.

Effects of EMI on signal
We induced EMI of 13.56MHz using a commercial RFID card reader
(RF430FRL15xH by Texas Instruments). We evaluated the condition
when the antenna was placed 1 cm above the summing amplifier
and when the antenna was placed 1 cm above a 15 cm by 15 cm con-
ductive fabric used for propagating the ACES signatures. We also
evaluated the situation when a grounded aluminum foil sheet was
placed between the antenna and the system for the aforementioned
antenna placements. The signal-to-noise ratio, computed as the ratio
of peak-to-peak voltage of the pulse signature to the peak-to-peak
voltage of background noise, was measured for all four scenarios.
The 2.4-GHz interferencewas projected fromaTG.30 antenna (Taoglas
Antenna Solutions) driven by a SMB100A signal generator (Rohde &
Schwarz). The antenna was placed 20 cm above the ACES systemwith-
out shielding.

Determining DSIR and verification of timing precision
The physical hardware test setup consisted of an array of 240 receptors,
each programmedwith a unique pulse signature. Each trial began with
an external digital edge signal that was broadcasted to all receptors,
triggering a request for transmission. Upon receiving the trigger, each
receptor transmits its pulse signature after a random delay of less than
1 ms, thus ensuring that all the 240 transmitted signatures will over-
lap at varying temporal offsets between trials. For trials involving less
than 240 receptors, the excluded receptors were programmed to ignore
the trigger.

Receptors (16 of 240) have recording probes attached to their trans-
mission pins. Signals from these probes served as the ground truth on
the actual time of the pulses transmitted. The digital signals from these
16 probes, as well as the combined pulse signatures from the 240 recep-
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
tors, were digitized at 125MHz simultaneously by a mixed signal oscil-
loscope (PicoScope 3406D), thus ensuring that all channels were
synchronized in time.

We defined the DSIR metric to characterize the ease of an event
detection in the presence of interference. The interference value is
taken to be the root mean square value of the decoder correlation |T|
during the 1-ms transmission window of the corresponding receptor.
The last 100 ns of the decoder output was excluded because it corre-
sponded to the detection of the correct pulse signature and should not
be considered as interference. DSIR was then computed as the ratio
between the signature weightW and the interference value. The DSIR
was computed for the decoders responsible for the 16 probed recep-
tors. For each network size, 1000 trials were conducted, and the re-
ported DSIR was averaged from the 16 decoder outputs across all
1000 trials.

Timing precision was obtained as the difference in time between
the start of last pulse transmission, as obtained from the attached probe,
and the transmission time, as determined from the decoder output.
The measured time difference is thus independent of the mechanical
inertia of the transducer and processing time of the receptor model.
The reported timing precision in Fig. 2A was obtained as an average
across all the 1000 trials for each network size.

Monte Carlo simulations
Monte Carlo simulation was used to obtain estimates of DSIR for
network sizes above 240 receptors. For each trial involving a simu-
lated array ofN receptors, we additively combinedN pulse signatures
at random offsets of <1 ms. The resultant signal was then decoded
using the same software decoder as the physical experiments. One
thousand Monte Carlo trials were performed for each network size.

SPICE simulations
The temporal precision of an ACES receptor array was limited mainly
by the duration of a single voltage pulse. As more receptors are added
to the array, the capacitance of the electrical conductor in which the
pulses propagate also increases. The increased capacitance results in
reduced phasemargin of the op-amp feedback loop and causes ringing
in the output (fig. S4A). The ringing can be reduced by increasing the
feedback capacitance (CF in fig. S4B) to improve stability. However,
pulse width also increases as a consequence. Hence, a SPICE simula-
tion (Cadence Spectre) was used to determine how the pulse width
changes with increasing number of receptors. The simulated circuit
is shown in fig. S4B. The input from each receptor was modeled as
a voltage source with a square wave. The edges of the waveform were
high-pass–filtered to obtain the waveform of the voltage pulse. A tran-
sient simulationwas run forN= 200 to 16,000. For eachN, the value of
CF was swept to find theminimumCF that has acceptably low levels of
ringing (i.e., the overshoot does not exceed quantization threshold set
at 40% of pulse amplitude). Last, the resultant pulse widthwas taken as
the length of time in which the voltage remained above quantization
threshold. The temporal precision of the system was interpreted as
0.5× pulse width.

ACES receptor response to pressure and prick
The analog output channel of a load cell (Mark-10) was connected to
the ADC pin of an ACES-FA receptor and an ACES-SA receptor, as
well as a recording channel on an oscilloscope, to serve as ground truth
(PicoScope). The summed signal from both receptors was simulta-
neously recorded using a separate channel on the same oscilloscope.
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Two mechanical stimuli were presented, the first being a finger press,
and the second being a prick by a lancet using a lancing device. The load
cell reading in Fig. 3B was smoothed using a moving average filter of
eight points (OriginLab 2017). Reconstruction traces were computed
offline using MATLAB.

Slip detection
An object (an acrylic disk with a diameter of 1 cm in Fig. 4B and a
needle with a diameter of 0.8 mm in Fig. 4C) was held vertically
between two flat surfaces of a bench vise. A pressure-sensing array
with 80 sensors (fig. S3B), interfaced with an array of ACES-FA recep-
tors, was pasted on one of the surfaces between the vice and the object. A
thread connected the object to a load cell (Mark-10 5i). A separate piece
of thread, connected to the opposite side of the load cell, was pulled to
make the object slip out of the vice. The combined signal output from
the 80 ACES receptors was sampled together with the analog output of
the load cell at 125 MHz using an oscilloscope (PicoScope 3406D).
Computation of slip detection was processed offline in MATLAB.

The computation of local movement estimates (Fig. 4A) was
generally as follows:

1) For an event from a particular receptor A that occurred at t0, look
for prior events from receptors within distance D of receptor A that
occurred at tprior where t0 − Dt < tprior < t0.

2) For each prior event, compute movement magnitude

Magnitude ¼ D
t0 � tprior

3) Movement direction for each prior event

Direction ¼ a tan 2ðdy; dxÞ

where dx and dy are the x and y components of the distance D.
4) By averaging the magnitude and direction for each prior event,

the local movement estimate at receptor A’s location was obtained.
The global movement estimate was obtained as the moving aver-

age (exponential kernel of 5-ms time constant) for all the local move-
ment estimates. For Fig. 4 (B and C), the time interval (Dt) was 5 ms
and the distance (D) was 2 mm. Ground-truth information was ob-
tained using an optical camera recording at 240 fps to track a marked
spot on the thread during the experiment.

Grating classification
Rectangular holes of 40 × X mm were laser-cut from 5-mm-thick
acrylic sheets, where X denotes the pitch of the grating. A pattern con-
sists of multiple holes were spaced X mm apart. Five grating pitches
were used (X = 2 to 6 mm in 1-mm increments). Each pattern was at
least 25 cm in length. An 80-element transducer array (fig. S3B) was
mounted on a 5-mm-thick piece of polyurethane rubber for compli-
ance (Ecoflex 00-30, Smooth-On). To achieve realistic stimulus
conditions, we moved the array over the gratings by hand at varying
tangential speeds and normal forces. Fifty trials were collected per pat-
tern, each lasting at least 1 s. To extract frequency domain informa-
tion, we compiled inter-event time intervals for eachACES-FA receptor
into a histogram of 100 bins (1 to 100 ms in 1-ms bins). The histo-
gramswere computed frommoving timewindows of 100-ms duration
in steps of 10ms each. Thus, a 1-s trial generates 91 histograms. Speed
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
estimates were computed using the same technique as the slip detec-
tion with Dt = 20 ms and D = 2 mm and averaged within each time
window. A secondary speed estimate was computed by multiplying
the event frequency corresponding to the highest bin count with the
grating pitch used. This second estimate serves as the ground truth
(blue dashed lines in Fig. 5, A and B).

We classified individual histograms for grating pitch using a multi-
layer perceptronwith 40 hidden neurons and 5 output neurons (nntool,
MATLAB). Input to the network was a 100 × 1 vector of bin counts
from the inter-event time histogram (magenta box in Fig. 5A). For
the case with speed estimates, a 101 × 1 vector was used, where the first
100 elements were the bin counts and the last element was the estimated
speed. In all cases, the scaled conjugate gradient backpropagation
(trainscg) algorithm was used for training. One randomly selected trial
per grating was excluded for each training instance and used for test.
Results reported in Fig. 5C were compiled from 20 training instances.
To simulate reduced temporal resolution, we binned time stamps of
the events at discrete values that are multiples of the reported tem-
poral resolution.

To compare data rates (Fig. 5D), we assumed a single frame to con-
sume 12 bytes (80 bits for 80 receptors + 1 byte escape character + 1 byte
delimiter). An event was assumed to be 1 byte long (7 bits address, 1 bit
data). Statistics for the event-based representation were obtained by
counting the number of received events in all the 100-ms time windows
acquired.

Local curvature and hardness classification
The shapes used for indentation are (i) a spherical dome of 10-mm
radius, (ii) a broad right circular cone of 7.5-mm height and 10-mm
base radius, and (iii) a sharp right circular cone of 7.5-mm height
and 2.5-mm base radius. Each shape is 3D printed twice, once using
a rigid RGD810 VeroClear material and a duplicate using the softer
FLX980 TangoBlackPlus material (fig. S5A). A 3D printer (Objet260
Connex) was used to produce the shapes. (See PolyJet Materials Data
Sheet for the material properties.)

The indentations were performed using a mechanized z-axis stage
(Newmark) with force feedback from the force gauge (Mark-10 5i) at a
speed of 50 mm/s. The depth of indentation of the softer shapes were
fixed at 2800 mm, whereas the hard shapes were indented to depths
that produced the same forces as their softer counterparts (~9 N for
the sphere, ~2 N for the broad cone, and ~0.3 N for the sharp cone).
The shapes were indented onto the center of a circular array of 69 sen-
sors interfaced with an array of ACES-FA receptors covered with a
1-mm-thick elastomer sheet (fig. S5B). Each shape was indented
10 times, with a 5-s interval between indentations to allow the de-
formable material to recover. Data from the force gauge and the
ACES receptor array were recorded simultaneously at 125 MHz
using an oscilloscope (PicoScope). All the trials were repeated with
the sensors interfaced with ACES-SA receptors to obtain the pres-
sure distribution.

The ACES-SA receptors were programmed to have an inter-event
interval of 10 ms per ADC bit. Therefore, each receptor will generate
events at a rate of about 100 Hz and will thus be sufficient to model a
conventional 100-fps pressure sensor array.

The output from ACES-FA receptors were classified on the basis
of the Van Rossum spike distance measure (52), commonly used to
quantify the similarity between spatiotemporal spike patterns. Events
from each receptor are convolved with a double exponential kernel
of 5-ms decay, thus yielding a continuous trace. Traces from the same
13 of 15
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receptor can then be compared between trials using the Euclidean
distance. The distance between any two trials was then calculated as
the sum of the differences between individual traces. Last, a K-nearest
neighbor algorithm (53) (with K = 5) was used to classify the trials
based on the summed distances.

To classify the output from ACES-SA receptors, we first recon-
structed traces of pressure intensity over time for each receptor based
on the time interval between events. The traces were then decimated
at 10-, 20-, and 40-ms intervals to mimic 100-, 50-, and 25-fps sensors,
respectively. Similar to ACES-FA receptors, the Euclidean distance
was used to compare the pressure traces from the same receptor be-
tween trials, and the sum of differences between individual traces de-
fines the distance between any two trials. The K-nearest neighbor
algorithm (K = 5) was then used to classify the trials based on their
distances.

Free-form receptor arrangements
To demonstrate the flexible arrangement of ACES receptors on a single
electrical conductor, we developed ACES receptors with their own bat-
tery power source. The receptors and the decoding circuit were con-
nected only by a stretchable conductor (knit jersey conductive fabric,
Adafruit). Pressure was applied by pressing a conductive rod onto the
receptors. The conductive rod provides a charge return path, such that
charges from the environment can flow back to the receptors by cou-
pling with the human operating the prototype. The same effect could
have been achieved through the use of a grounded conductive encap-
sulant. However, this approach was omitted to achieve better clarity of
the demonstration.

Robustness against severe damage
Battery-powered ACES receptors, connected together with a stretch-
able conductive fabric (knit jersey conductive fabric, Adafruit), were en-
capsulated in stretchable silicone rubber (Ecoflex 00-30, Smooth-On).
A stretchable coat of silver ink (PE873, DuPont) and encapsulant
(PE73, DuPont) was applied over the rubber via screen printing and
grounded to provide the charge return path.

To construct the conventional cross-bar multiplexed sensor array
used in the comparison, we fabricated two flexible printed circuit
boards (PCBs) to form the row and column traces. A piezoresistive
layer (Velostat, 3M) was sandwiched between the PCBs. Each inter-
section between a row and a column formed a pressure-sensitive
element. Traces from the PCBs were connected to an ATmega328
microcontroller (Atmel). Software running on the microcontroller
polled each sensor element sequentially to obtain the pressure dis-
tribution of the array. Figure 8D illustrates the circuitry used. Because of
the simplicity of the readout circuit, some cross-talk will be expected
(54). Nevertheless, because the array is relatively small, the cross-talk
did not affect the results significantly.

A ring-shaped acrylic object was pressed onto the sensor arrays to
deliver the stimulus. We cut the sensor arrays using a pair of scissors
to cause damage.

Power consumption measurements
Using a source measurement unit (Keithley 2450), we measured the
power consumption of a prototype board of 80ACES receptors at 3.3-V
operating voltage. The receptors were programmed with ACES-SA be-
havior, and results were an average from a 10-s observation.We did not
observe significant differences in power consumption when ACES-FA
behavior was implemented.
Lee et al., Sci Robot. 4, eaax2198 (2019) 17 July 2019
Fabrication of transducers
Details of material fabrication and characterization are available in
texts S1 and S2. Figure S2F was obtained using an automated mi-
croindenter (FemtoTools).
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/32/eaax2198/DC1
Text S1. Pressure sensor fabrication and characterization
Text S2. Temperature sensor fabrication and characterization
Fig. S1. Additional characterization of ACES signaling.
Fig. S2. Characterization of transducers.
Fig. S3. Example prototypes of ACES sensor arrays.
Fig. S4. SPICE circuit used for simulation.
Fig. S5. Setup for local curvature and hardness classification.
Movie S1. A typical 5 × 5 cross-bar sensor array subjected to physical damage.
Movie S2. Robustness of an ACES sensor array to physical damage.
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