
ARTICLE

Studying nucleic envelope and plasma membrane
mechanics of eukaryotic cells using confocal
reflectance interferometric microscopy
Vijay Raj Singh 1,2,3, Yi An Yang4, Hanry Yu 2,4,5,6, Roger D. Kamm 2,3,7, Zahid Yaqoob1 &

Peter T.C. So1,2,3,7

Mechanical stress on eukaryotic nucleus has been implicated in a diverse range of diseases

including muscular dystrophy and cancer metastasis. Today, there are very few non-

perturbative methods to quantify nuclear mechanical properties. Interferometric microscopy,

also known as quantitative phase microscopy (QPM), is a powerful tool for studying red

blood cell biomechanics. The existing QPM tools, however, have not been utilized to study

biomechanics of complex eukaryotic cells either due to lack of depth sectioning, limited phase

measurement sensitivity, or both. Here, we present depth-resolved confocal reflectance

interferometric microscopy as the next generation QPM to study nuclear and plasma

membrane biomechanics. The proposed system features multiple confocal scanning foci,

affording 1.5 micron depth-resolution and millisecond frame rate. Furthermore, a near

common-path interferometer enables quantifying nanometer-scale membrane fluctuations

with better than 200 picometers sensitivity. Our results present accurate quantification of

nucleic envelope and plasma membrane fluctuations in embryonic stem cells.
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The mechanical environment plays important role in many
cellular physiological and pathological processes1. The
impact of drug response on cellular biomechanics has also

been highlighted as an important consideration in mechan-
opharmacology2–4. Atomic force microscopy (AFM)5 and optical
tweezers-based methods6 can provide direct measurement of the
cellular plasma membrane elasticity. However, these methods are
contact based and are perturbative where the measurement itself
may elicit cellular responses. Particle-tracking microrheology can
allow measuring mechanical forces on the plasma membrane, as
well as within the cytosol by passively observing thermally driven
motions of embedded tracer particles7. However, the delivery of
particles into cells is often invasive, and the measurement results
may depend on how tracer particles are processed by the cells
after delivery. In summary, most existing methods that are cap-
able of quantifying whole cell biomechanics are often perturbative
and low throughput with very limited capability to quantify
mechanical properties of thousands to millions of cells on a
population level.

It is also impotant to note that most existing methods provide
overall mechanical characteristics of the cell8,9 with limited ability
to resolve the relative contributions from the plasma membrane,
the cytosol, or the internal organells. Among cellular organelles,
nucleus is the largest and stiffest component, exposed to extra-
cellular and intracellular mechanical forces. Recently, the
importance of nuclear mechanics has been recognized due its
strong correlation with gene signaling and gene transcription10,11.
Nuclear stiffness has also been shown to regulate cell phenotype
during the stem cell differentiation12. Furthermore, the extra-
cellular forces can also modify nuclear shape, structure, and
stiffness13,14 that may have important role in cellular physiolo-
gical and pathological processes15,16. For instance, nuclear pore
selectivity and loss of nuclear envelope integrity are shown to be
linked with various human diseases including cancer17–21. Hence,
biomechanics-related properties of the nucleus, e.g., stiffness,
disorder, compactness, and deformability need to be quantified
accurately for studies involving nuclear mechanotransduction.
However, non-invasive and accurate measurement of nucleic
mechanical properties is challenging. For example, partial wave
spectroscopy provides change in characteristic length of spatial
fluctuations of refractive index of the nucleus, called disorder
strength22. The disorder strength is related to the macromolecular
organization; however, it does not directly inform on the
mechanical properties of the nucleus itself. Recently, quantitative
phase microscopy (QPM)-based methodologies have also been
presented to estimate the disorder strength, which can be related
to the refractive index variance in biological cells and tissue
samples. More precisely, the measured disorder strength para-
meter has been linked with the cell stiffness23 and used to com-
pare benign versus malignant breast tissue biopsies24.
Interestingly, Brillouin spectroscopy enables non-invasive quan-
tification of material properties by quantifying the interaction of
light with spontaneous acoustic phonons, providing longitudinal
modulus of the material in the gigahertz (GHz) frequency
range25. Further, Brillouin light scattering has also been reported

to measure intracellular longitudinal modulus26. While this is a
powerful method to determine relative stiffness of materials, the
interpretation of nuclear deformation events on physiologically
much shorter frequency scales based on modulus measured on
the GHz scale requires many assumptions that are difficult to
validate for complex fluids, such as the constituents of the nucleus
and cytosol. In addition, Brillouin spectroscopy also requires
point scanning in 3D, which renders the approach low
throughput.

An important alternative approach that may provide quanti-
tative mapping of nucleic mechanical properties is based on
measuring nanometer scale thermally driven cell membrane
fluctuations with millisecond temporal resolution using QPM27.
Coupled with appropriate continuum or finite element mechan-
ical models, the measured membrane fluctuations can further
allow quantification of cellular elasticity and loss moduli27. This
approach has been successfully utilized in staging various red
blood cell (RBC) disorders28–31. However, since most QPM
techniques are designed with transmission geometry with limited
to no depth resolution, successful applications of the approach in
quantitative biomechanical measurements are mostly confined to
the studies of blood disorders involving imaging of RBCs with
homogenous intracellular environment. For eukaryotic cells,
depth-sectioning of about 1–2 μm is often needed to separate
signal from the plasma membrane versus the nucleic envelope
and vice versa. Realizing that studying eukaryotic cells
with complex intracellular structure is critical to expand the
utility of QPM in cell biomechanics, several generations of
reflection-mode QPMs have also been developed with varied
depth-sectioning capability32–40 (Table 1). Since the refractive
index contrast between the cytosol and the nucleus can be less
than one part in 10,000, high-sensitivity QPM characterized by
phase-stabilized interferometer design and low shot-noise-limited
detection is required. We note, however, while some of these
systems offer desired depth sectioning, none of them have suffi-
cient sensitivity to quantify the nanometer-scale membrane
fluctuations of the NE.

Here, we present a confocal reflectance interferometric
microscope system that features 1.5 microns depth resolution and
better than 200 pm height measurement sensitivity for high-speed
(~70 Hz wide-field) characterization of nanometer scale nucleic
envelope and plasma membrane fluctuations in complex eukar-
yotic cells. A theoretical model is presented for recovery of the
correct displacement of the fluctuating membrane in the vicinity
of the strong reflector. Measurements of nucleic envelope and
plasma membrane fluctuations are carried out for mouse
embryonic stem (ES) cells; the quantitative analysis shows higher
fluctuation amplitude for plasma membrane than that for the
nucleic envelope. Further, we also observe the nucleic envelope
fluctuations of cells depend on their substrate rigidity.

Results
Confocal reflectance interferometric microscopy. The core
instrument innovation (Fig. 1) includes the use of confocal

Table 1 Summary of depth-resolved reflectance QPM systems

Depth-sectioning strategy Illumination scheme Common-path geometry Best axial resolution (μm) Best speed

Broad band source32–35 Point-scan, line-scan, wide-field Yes32–34 ~4 1 kHz
Swept-source36 Wide-field Yes ~5 68 s
White light based37 Wide-field No ~1 < 1 Hz
VCSEL array-based38 Wide-field No ~8 10 kHz
Confocal slit-aperture39 Line-scan No ~2 20 Hz
Dynamic speckle-based systems40 Wide-field No ~1 100 Hz
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principle to achieve micron-level depth resolution and a high-
speed digital micro-mirror device (DMD)41 to generate a scan-
ning confocal spots grid, allowing fast full-field imaging. A
complete theory of the proposed confocal interferometric system
is described in Supplementary Note 1. Finally, a highly stable near
common-path interferometer, which shares the design with pre-
viously published diffraction phase microscopy42, is implemented
in the detection arm to quantify the confocal signal with height
measurement accuracy better than 200 pm (Supplementary
Note 2). A series of wide-field interferograms from an interface,
such as the plasma membrane or the nucleic envelope, are
acquired in an off-axis geometry. The measured single-shot off-
axis interferograms can be analyzed to compute the phase maps ϕ
(x,y;t) using Hilbert transform43. Furthermore, the phase maps
corresponding to different cellular interfaces can be determined
independent of each other if their separation is larger than the
instrument’s axial resolution.

For the proposed system, reference field is generated using the
optical signal from the highly reflected glass interface, located at
an off-focal plane, underneath the cell. This mechanism provides
a phase-stabilized reference, which is critical for desired phase
measurement stability. However, the presence of signal from glass
interface, which is crucial to generate a stable reference, also
suppresses the measured phase associated with the fluctuating
membrane when computed using Hilbert transform. To this end,
a method to characterize the effect of optical signal from off-focal
plane glass interface on the measured phase and an approach to
obtain correct phase reconstruction is presented in Supplemen-
tary Note 3. The corrected phase maps can be converted to height
maps using the relation h x; y; tð Þ ¼ ϕ x;y;tð Þ ´ λ

4π ´ n , where λ is the
wavelength of the source and n is the refractive index of the
culture medium. The instantaneous cell membrane deformation

map is obtained by subtracting its mean height from the
instantaneous height reconstructed at each time point, i.e.,
Δh x; y; tð Þ ¼ h x; y; tð Þ � hh x; yð Þi.

Characterizing nucleic envelope and plasma membrane fluc-
tuations. To demonstrate the capability of the proposed optical
system, we have characterized nucleic envelope and plasma
membrane fluctuations in mouse ES cells, E14 (ATCC, CRL-
1821). Figure 2a shows an interferogram recorded at the cell–dish
interface (Z= 0 μm). Optical signal detected from the selected
cell’s bottom region is primarily dominated by the cell–dish
interface reflections. While scanning the focal plane, back-
scattered optical signal from nucleic envelope was observed at
~4 μm above the cell bottom surface. However, since the refrac-
tive index contrast is significantly lower for nucleic envelope
interface, approximately seven times higher laser power was
required for interferogram recording with similar SNR as that for
the cell–dish bottom interface. Furthermore, the signal from the
plasma membrane was observed at ~9 μm away from the bottom
surface. The first row in Fig. 2b shows the zoomed region of
interferogram in Fig. 2a, when microscope objective’s focal plane
coincides with the dish–cell membrane, the nucleic envelope, and
the plasma membrane interfaces, respectively. Regions of
nucleic envelope and plasma membrane are highlighted using
red-dotted circles, and marked for further analysis. The corre-
sponding 3D height maps reconstructed from the interferograms
are shown in the bottom row of Fig. 2b. Animations of the out-of-
plane fluctuations corresponding to the bottom interface, nucleic
envelope, and plasma membrane are shown in Supplementary
Note 4. To compare nucleic and plasma membrane fluctuations,
plots of instantaneous fluctuation amplitudes, Δh(x,y;t), at single
spatial location of cell–dish interface, as well as for nucleic
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envelope and plasma membrane interfaces are shown in Fig. 2c.
Fluctuations of nucleic envelope and plasma membrane, repre-
sented by red and black traces, respectively, are clearly distin-
guishable. Similar measurements were also performed at multiple
spatial locations of respective interfaces; the root-mean-square
(rms) fluctuation amplitudes are plotted in Fig. 2d. Specifically,
we found that the nucleic envelope median rms fluctuation
amplitude (~2.59 nm) was smaller than that of the plasma
membrane (~9.93 nm) indicating higher stiffness of nucleic
envelope. We also observed suppressed fluctuations (represented
by blue trace of Fig. 2c) at the cell bottom interface, which is likely
due to multiple focal adhesions between the cell membrane and
the substrate. Furthermore, the noise floor of the system (repre-
sented by green trace) was determined by analyzing a region
outside the cell, i.e., at cell culture medium–dish interface and was
found to be ~0.62 nm. Moreover, the analysis of nucleic envelope
and plasma membrane fluctuations was also extended to multiple
cells. The rms fluctuation amplitudes for nucleic envelope and
plasma membrane for five different cells are shown in Fig. 2e,
highlighting cell-to-cell variability. Note that each data point
represents the mean rms fluctuation amplitude corresponding to
multiple spatial locations on nucleic envelope or plasma mem-
brane interface of respective cell.

The relaxation dynamics of nucleic envelope and plasma
membrane fluctuations can be modeled by exponential decay
phenomenon and characterized by the non-normalized temporal
autocorrelation function (covariance) of the instantaneous height
fluctuations. Specifically, we calculate the temporal autocorrela-
tion function defined as

G τð Þ ¼ hðh tð Þ � hÞ h t þ τð Þ � hð Þð i:
for different interfaces, where τ is the lag time. Figure 3a shows
the autocorrelation function plot at a single (x,y) location of
corresponding interfaces. Variance of fluctuation amplitudes
(zero lag time) was also calculated for multiple spatial locations of
corresponding membranes; Fig. 3b shows measured variance,
subject to the white noise, at multiple locations. Moreover,
autocorrelation function for τ > 0 represents the dynamics of
membrane height fluctuations. For accurate variance of fluctua-
tion amplitudes, autocorrelation function value is extrapolated to
τ > 0 time point by using spline fitting the rest of the
autocorrelation plot. The corresponding corrected autocorrela-
tion plots for cell bottom, nucleic envelope, and plasma
membrane interfaces are shown in Fig. 3c. The variance of
fluctuation data from the extrapolated autocorrelation function is
shown in Fig. 3d. Clearly, the extrapolated autocorrelation
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suppresses the white noise from the fluctuations data and
improves measurement accuracy for height fluctuation statistics.

To further demonstrate the ability of the proposed confocal
reflectance interferometric microscope, we have quantified the
effects of substrate rigidity on nucleic envelope fluctuations. In
the past, studies based on fluorescent probes have indicated that
nuclear mechanics is regulated by biophysical signals, such as
externally applied forces through the manipulation of substrate
rigidity14. Attempts have also been made to measure the temporal
changes in the fluorescently labeled nucleic envelope44. We use
our label-free approach to quantify the effect of substrate rigidity
on the nucleic envelope fluctuations in a non-contact manner.
Mouse ES cells E14 ES (ATCC, CRL-1821) were cultured, and
undifferentiated cells were seeded at a moderate density
(~103 cells/cm2) on two Petri dishes, coated with fibronectin
and gelatin substrates, respectively. After the cells had been
seeded for 2 hours, nucleic envelope fluctuations were measured
for both populations. Figure 4a shows the comparison of nucleic
envelope instantaneous fluctuation amplitude at a single spatial
location for two representative cells, one from each population.
Clearly, reduced nucleic envelope fluctuations were measured for
the cells adapted on fibronectin substrate versus gelatin. This may
be due to the fact that cells make fewer focal adhesions on gelatin
versus fibronectin45. A statistical analysis was also performed by
analyzing multiple spatial locations of the nucleic envelope on five
different cells, each coded in different color. Figure 4b shows out-
of-plane nanometer scale rms fluctuation amplitude of the nucleic
envelope with milliseconds temporal resolution for different cells
adapted on fibronectin and gelatin substrate. In comparison, the

previous fluorescence-based study44 reports nucleic envelope
fluctuations with diffraction-limited spatial resolution, and
temporal resolution on the order of seconds.

Discussion
In the past, efforts have been made to estimate RBCs’ membrane
rheological properties using nanometer scale membrane fluctua-
tions information measured using diffraction phase
microscopes29,46,47. These studies have led to quantification of
RBC pathophysiology in malaria28, metabolic remodeling of
human RBC membrane48, and RBC stiffness in sickle cell dis-
ease49. Specifically, the theoretical framework47,50 interprets the
measured membrane fluctuations using a viscoelastic continuum
model of the composite spectrin-network/lipid membrane
bounded by bulk viscous fluids on both sides. While this is a good
model for RBCs, it is clearly insufficient for eukaryotic cells.
Unlike RBCs, the interior of eukaryotic cells is not homogenous
but has at least two major compartments, namely, the cytosol and
the nucleus, with different viscoelastic properties51,52. Therefore,
the simplest model must consists of three compartments: the
medium (pure viscous fluid), the cytosol (viscoelastic medium),
and the nucleus (a different viscoelastic medium) bounded by two
interfaces (the plasma membrane and the nucleic envelope) with
different bending, κ, and extension, σ, moduli. Granek53 has
reported a relevant model that can recover bending modulus of a
membrane driven by thermal forces separating two viscoelastic
media with different frequency-dependent complex moduli using
spatial and temporal autocorrelation functions of the interface
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fluctuations that can be quantified using confocal phase micro-
scopy presented here. Since we expect that extension moduli to
dominate in the spatial/temporal scales of eukaryote cells mea-
sured in millisecond to second time scale, the Granek model will
need to be extended theoretically to account for both the bending
and stretch moduli; this extension is fairly simple given these two
moduli have very different spatial and temporal power depen-
dence. Subsequently, the Granek model can then be applied for
this three-compartment case to determine plasma and nucleic
membrane moduli assuming the viscoelastic properties of the
cytosol and the nucleoskeleton can be independently measured.
Recent development of force spectrum microscopy54, an
advanced form of laser trap-activated particle rheology, offers an
attractive approach to accurately determine the unknown
frequency-dependent viscoelastic properties of these two com-
partments. Our future experiments are planned to incorporate
force spectrum microscopic measurement in model systems to
validate the recovery of plasma and nucleic membrane bending
and extension moduli based on confocal phase microscope
measurements of their fluctuation amplitudes.

In summary, we have developed a confocal reflectance inter-
ferometric microscope that enables quantifying nanometer
scale nucleic envelope and plasma membrane fluctuations in live
cells with millisecond time resolution in non-contact and label-
free fashion. The measured membrane fluctuations are directly
related to cell’s mechanical properties, which can be extracted by
utilizing the measured temporal autocorrelation with an appro-
priate mathematical model. Label-free and non-contact quanti-
fication of nucleic mechanical properties will help understand key
biological questions, such as the role of nuclear stiffness in cancer
metastasis, especially during the extravasation process18,55.
Finally, we believe that the proposed system, featuring fine depth
selectivity and superior measurement sensitivity, will enable
future studies of single cell biomechanics within tissues and
animals in vivo.

Methods
Instrumentation. The schematic of the confocal reflectance interferometric
microscope is shown in Fig. 1. A frequency-doubled Nd-YAG laser operating at
532 nm (Verdi6 from Spectra Physics) is used as the light source. The pinhole array
is created using a DMD-1, which allows simultaneous confocal imaging at multiple
spatial locations. Diffraction-limited size pinholes are generated by turning ‘ON’ a
set of DMD-1 micro-mirrors arranged on a grid. This pinhole array is relayed,
using a 4-f system, to project the excitation field upon the specimen plane. The
back-scattered optical field from the specimen is projected back to DMD-1, where
only in-focus signals are passed through the ON-state micro-mirrors that also

function as an array of confocal pinholes to reject out-of-focus background. We
note that DMD-1 can be reconfigured at a rate of over 20 kHz, allowing high-speed
raster scanning of pinhole array for fast full-field imaging. The imaging speed is
also inversely proportional to the total number of scanning patterns. Thus, for a
given scanning speed of DMD, there is a trade-off between imaging speed and axial
resolution as discussed in Supplementary Note 5.

A Zeiss ×40 objective with a numerical aperture (N.A.) of 1.2 (Zeiss C-
Apochromat ×40/1.2W Corr M27) is used for imaging. The physical size of each
micro-mirror is 13.7 μm. We use 3 × 3 micro-mirrors to constitute a single confocal
pinhole with an equivalent size of 1.02 µm at the specimen plane. A DLP Discovery
4100 kit (from Texas Instruments), which provides a binary pattern display rate up
to 22 kHz using the 0.7XGA Chipset41, is used to implement the scanning pinhole
array. Wide field-of-view imaging is achieved by raster scanning the confocal
pinhole pattern keeping two micro-mirror overlap. We used a total of 310 scanning
patterns, which corresponds to wide-field imaging at ~70 Hz.

Interferometric detection. For interferometric imaging, the DMD-1 image plane
is further relayed to a second imaging plane followed by interferometric detection.
More specifically, a near common-path interferometer is implemented that shares
the design with previously published diffraction phase microscopy42. To imple-
ment common-path interferometry, a grating is placed at the second image plane,
which diffracts the signal beam into two orders (0 and +1) essentially generating
two copies of the object beam. First lens (L4) of the second relay generates a
frequency spectrum of the confocal-detected multi-aperture object field at the
Fourier plane. A second DMD-2, DLP® lightcrafterTM evaluation module, is placed
at this Fourier plane. Note that the light engine of the DLP lightcrafter module was
removed and the chip with the micro-mirror array was placed at the Fourier plane.
One half of DMD-2, corresponding to the 0th order, is programmed to act like a
mirror by opening (or turning ON) all the micro-mirrors corresponding to that
region. By allowing the entire spectrum corresponding to the 0th-order beam to
pass, we generate the image of the object at the camera plane. To generate the
reference wave for near common-path interferometry, a spatial frequency filter
(COMB pattern) is generated on the remaining half of DMD-2. This COMB
pattern is essentially the Fourier transform of the pinhole array used at the DMD-1
plane. This pinhole array filters out the high-frequency components of each COMB
element of the first-order beam, effectively providing a reference wave with average
phase of the object field. The object and reference beams interfere to form a
complex interference pattern, which is recorded by a CMOS sensor (Hamamatsu
ORCA 2.0). The theoretical framework describing the object and reference fields,
and reconstruction of accurate quantitative phase corresponding to the specimen,
is provided in detail in Supplementary Note 1.

System calibration. To demonstrate the depth resolution of the system, we scan a
reflective surface along the axial direction. Briefly, interferograms of water–glass
interface were recorded for different axial positions. The full width at half max-
imum (FWHM) of axial point spread function was determined as 1.5 μm, which
defines the depth resolution of our system. Furthermore, a series of interferograms
were also recorded to quantify the system’s phase stability. The maximum phase
noise observed from the system is around 5 milliradians that corresponds to about
160 pm. Finally, the accuracy of quantitative phase was measured by quantifying
reflective phase specimen with 100 nm step height. See Supplementary Note 2 for
details.
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Sample preparation. All cell culture reagents were supplied from Invitrogen
unless otherwise specified. Mouse E14 (ATCC, CRL-1821) ES cells were cultured in
5% CO2/95% O2 in DMEM supplemented with 10% ES cell qualified FBS, 2 mM L-
glutamax, 1 mM sodium pyruvate, 100 μM non-essential amino acid, 0.1 mM β-
mercaptoethanol, 1000 UmL−1 mouse leukemia inhibitory factor (LIF, Millipore,
ESG1106), and 100 UmL−1 penicillin/100 μg mL−1 streptomycin. For differentia-
tion, 35 mm Petri dishes (Nunclon) were coated with fibronectin solution, where
undifferentiated mouse ES cells were seeded at a moderate density (103 cells cm−2)
in culture medium without LIF.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data for all the figures are provided with the paper.

Code availability
The codes used to analyze the source data are available on reasonable request from the
corresponding author.
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