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Additive manufacturing (AM) or 3D printing is an ideal

technology for building flexible, complex, monolithic devices.

Organs-on-chips (OOCs) are biomimetic microsystems that

recapitulate the crucial structures and functions of human

organs. Organ-level activities, mechanics and physiological

response can be stimulated and investigated in OOCs.

Convergence of AM technology along with OOCs offers a more

efficient route for creating complex organ or tissue structures

with precise 3D cell patterning, biomaterial heterogeneity and

specific functionalities. Here, we focus on the recent advances

in the field, specifically in the fabrication modalities, materials

and characterization methods, which are commonly employed

for OOCs based on 3D bioprinting. We also discuss the most

significant potential applications from integrating 3D

bioprinting with OOCs, aiming to provide future strategies for

more efficient, automated, modularly integrated, and

customizable OOCs.
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Introduction
Additive manufacturing (AM), also known as three-

dimensional (3D) printing, spurs innovations in
www.sciencedirect.com 
fundamental research, engineering and education. Par-

ticularly, AM technology offers unprecedented digital

platforms using computer-aided design and manufactur-

ing tools to reconstitute biological architectures (e.g.

tissue or organ) [1,2��,3]. Organs-on-chips (OOCs) are

the hierarchal organ-level microfluidic platforms for

reconstituting complex structures and closely mimicking

physiological functionality of real organs [4]. OOCs are

potential alternatives for mammal models which will be

eliminated by U.S. EPA before 2035 [5], and have been

employed in the studies of tissue development, organ

physiology, disease etiology, drug discovery and toxicity

assays [6]. As a typical microengineered platform, early

stage OOCs have been constructed predominately by

using standard microfabrication techniques, which are

often not adjustable to biological functionalities. More-

over, advanced OOCs should recapitulate multicellular

architectures, mechanical features, tissue-tissue inter-

faces, and physicochemical microenvironments of the

human body in a single platform. To achieve this, bio-

compatible materials, arranged cells, and supporting scaf-

fold are often needed to be simultaneously patterned in

precise geometries rather than additional biofunctionali-

zation treatment after microfabrication.

3D bioprinting, a promising strategy that is derived from

AM for building OOCs, is able to precisely control the

spatial distribution and depositing sequence of cells,

biomolecules and biomaterials layer by layer [7]. Then,

living tissues or organs with heterogeneous structures and

multiple materials are manufactured following a bottom-

up order. Compared with conventional AM technologies,

3D bioprinting is more challenging because the choices of

cell types, cell growth and differentiation factors, tissue

construction and functionalities should be systematically

considered. In the past years, there have been an

increased number of efforts that integrate 3D bioprinting

with OOCs [8]. Merits of such cooperation include the

following: integration of large-scale microfluidics with

micro- physiological structure, production of precise 3D

cellular architectures, programmed flow control for stable

microenvironment maintenance, mimicking functionality

and extending cell viability, detectable generation of

tissue/organ-level structures, and potential for building

tissue-tissue interfaces. Schematic of main concept of

integrating AM with microfluidics for constructing OOCs

is illustrated in Figure 1.
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Figure 1

Microfludic integration of additive manufacturing
for constructing organs-on-chips

Organs-on-chips

Microfluidics
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Concept of integrating AM with microfluidic for OOCs.
Herein, this mini review discusses principles, concepts,

and approaches pertaining to 3D bioprinting. Also, the

most significant advances in the past few years, potential

and future perspectives of this integrated technology are

discussed. A brief timeline and milestones of the OOCs

and bioprinting development are illustrated in Figure 2

referred to Refs. [1,6,9,10].

Bioprinting modalities
In accordance with the working principle, technologies

used for deposition and patterning of cells and relevant

materials are mainly classified as micro-extrusion, inkjet-

based and optical-assisted printing. Schematic of the

principles and typical examples are illustrated in Figure 3.

Micro-extrusion bioprinting

Micro-extrusion bioprinting (MEB) deposits cells with

biomaterials, usually in filament forms, onto a substrate,

with predefined positions through a head or needle by

physical forces. The forces are pneumatic-driven,

mechanical-driven and solenoid-driven [11,12]. Materials

can be continuously patterned onto the substrate layer-

by-layer and solidified to have a sufficient mechanical

integrity. The front layer serves as a supporting founda-

tion for the next. Inks with viscosities ranging from 30 to

60 � 107mPa/s are suitable for MEB and an increased ink

viscosity strengthens the rigidity of fabricated structures.

The most important strength of the technology is the

ability to deposit cells with high densities, which is crucial

for engineered tissues and OOCs. The universal applic-

ableness and cost-effectiveness of MEB made it the first

and foremost method to use. While, cell viability by this
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method is found to be relatively low (40–80%), resulting

from the shear stresses in viscous fluids during dispensing

procedure [1,2��]. Recently, a tissue-organ printer based

on MEB method has been used for stable, human-scale

tissue constructs of any shape, providing a more realistic

platform for OOCs development [13].

Inkjet-based bioprinting

Inkjet-based bioprinting (IBB) method fabricates 3D

structures by delivering controlled volumes, usually in

the form of droplets, which contain cells and cell-laden

materials to substrates. Pressure pulses that spray droplets

from a nozzle are usually generated by thermal, piezo-

electric or acoustic methods [14�]. IBB provides many

advantages such as high throughput, precision, speed,

reproducibility and wide availability. Main challenges

of the IBB method lie within the formation of the dro-

plets. Specifically, thermal-based methods induce local-

ized thermal and mechanical stress that impact on cells

and materials. Acoustic methods are prone to physical

damages of the cell membrane since the working fre-

quencies is in a range of 15–25 kHz by piezoelectric heads

[15]. Also, bio-inks viscosity should be controlled

between 3.5–12.0 mPa/s to minimize clogging of nozzles.

Studies quote cell viabilities in excess of 85% by this

printing modality. Recently, cell sedimentation in a

microfluidic network has been demonstrated by the

inkjet-based 3D-patterning method [16].

Optical-assisted bioprinting

Laser-assisted bioprinting (LAB) is a method based on

the principles of laser-induced forward transfer. A LAB
www.sciencedirect.com
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Figure 2
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A brief timeline and milestones of the development of OOCs and bioprinting.
system often includes a pulsed laser beam, a focusing

system, a ‘ribbon’ containing a laser absorption layer, a

biological layer, and a receiving substrate. Focused laser

pulses on the absorption layer of the ribbon result in a

high-pressure bubble that propels cell-containing materi-

als toward the receiving substrate. Inks with viscosities

ranging from 1 to 300 mPa/s are generally used. LAB

studies have reported the highest cell viability of above

90% and the highest printed resolution compared to the

two above modalities. While, preparation of ribbons is

labor intensive and may become onerous once different

cell types are involved. Also, laser power, biological layer

thickness, and the length between the ribbon and the

receiving substrate should be optimized before printing.

Recently, a LAB-based technique has been reported for

cell-laden microbeads patterning, which enables the

growth and formation of self-contained, self-aggregating

cells [17]. Besides, on the basis of the mechanism of

photopolymerization, stereolithography (SLA), digital

micro-mirror device-based stereolithography, two-photon

lithography have also been used for bioprinting [10],

particularly for functional microfluidic systems, with

potential outlooks in OOCs [18�,19].

Other methods such as cell electrospinning [20] and

surface tension-assisted manufacturing [21] have also

been used in 3D bioprinting. Commercial bioprinters
www.sciencedirect.com 
have been developed for printing cells and biomolecules,

such as EnvisionTEC 3D Bioplotter, Organovo NovoGen

(the first 3D bioprinting company), and regenHU

BioFactoryTM.

Bioprintable materials
Considering the inclusion or exclusion of exogenous

elements, materials used in 3D bioprinting can be cate-

gorized into two types: scaffold-based and scaffold-free.

The former bioink can be prepared by hydrogel, decel-

lularized extracellular matrix (dECM) and microcarriers.

The latter one is formed by cell pellet, tissue spheroids

and tissue strands techniques.

Scaffold-based bioink

Materials in scaffold-based bioinks serve multiple pur-

poses: interacting with cells, providing vehicles for cell

loading and building scaffolds for tissue formation.

As a cross-linked polymeric substance, hydrogel can

absorb and maintain large amount of water to build a

favorable environment for living cells.

Naturally derived (e.g. gelatin, fibrin, collagen, chitosan,

and alginate) and synthetic hydrogels (e.g. polyethylene

glycol and Pluronicã) have been widely used [22]. In

cell-laden hydrogels, biologically active components
Current Opinion in Chemical Engineering 2020, 28:1–9
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Figure 3

a1

b1

c1

d1

c2

c3

d2

d3

c4

b2 b3

a2 a3Pneumatic
Piston

Thermal
Piezoelectric

Laser pulse Absorption layer

Heater Piezoelectric
crystal

Biological
layer

Lead
screwDrive

gear 

Step
motor

Syringe

ArF Excimer Laser

Iris

CCD Camera

Mirror

Mirror

Mirror 1

Objective

Ribbon

Petri Dish

Energy Meter

Current Opinion in Chemical Engineering

Schematics of 3D-cell printing methods with different working principles: (a1) micro-extrusion, (a2) inkjet-based and (a3) laser-assisted printing.

Micro-extrusion based printing [12]. (b1) Rendering of the assembled syringe pump extruder and a printer. (b2) Time-lapse sequence of 3D

bioprinting of a university logo. (b3) Printed collagen heart and the cross-sectional view of the collagen heart. Inkjet-based printing [16]. (c1)

Schematic representation of 3D checkerboard composed of two patterns. Patterns of a university logo (c2), concentric circles, partial circles

Current Opinion in Chemical Engineering 2020, 28:1–9 www.sciencedirect.com
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including growth factors, other extracellular matrix

(ECM)-associated proteins are usually encapsulated for

enhancing cell adhesion, cell proliferation or differentia-

tion [23�]. Solidification of printed hydrogels is realized

through thermal, photo cross-linking, or ionic/chemical

cross-linking processes. Recently, hydrogel bioinks have

been doped with nanomaterials for improving robustness

and cell differentiation [24�].

In parallel, decellularized extracellular matrix (dECM)

bioinks have been developed by laboratories and com-

panies (Alloderm1, SurgiSIS1 and Synergraft1) for

3D bioprinting. dECM is isolated from organs/tissues to

simulate the complex ECM microenvironment of

human tissues [25]. In addition, microcarriers produced

by synthetic (e.g. dextran) or natural (e.g. cellulose,

gelatin, and collagen) materials are also used as reinfor-

cements in bioinks by providing skeletons for cell

growth [26].

Scaffold-free bioink

Multicellular aggregate can be directly used as a hospita-

ble bioink since the evolution of organ is based on the

cellular self-assembly mechanisms [1]. Techniques such

as cell pellet, tissue spheroids and tissue strands have

been utilized for preparing scaffold-free bioinks. Of

these, cell pellet employs centrifugal or gravitational

forces to concentrate cells at the bottom of conical tube,

followed by cell transfer to a micropipette or other molds

[27]; tissue spheroids are prepared by organizing cells into

spherical-shaped aggregates which can serve as building

blocks for tissue engineering [28]; tissue strands are

formed by injecting and packing cells in a heavy density

into hollow alginate tubes, which are used as filaments for

3D bioprinter [29]. The resulting cell aggregates can be

directly used for downstream self-assembling without the

need for sophisticated systems while improving the inter-

cellular interactions.

Features including printability, biocompatibility,

mechanical properties, material biomimicry, degradation

kinetics and byproducts are essential to the real applica-

tion of bioinks referred to [30].

Recent advances in OOCs by 3D bioprinting
Advanced bioprinting technologies and innovative

biomaterials have boosted the development of OOCs

systems. In the past years, there have been increasingly

successful utilization in on-chip recapitulation of key

structures/units and functions of tissues/organs [1,2��].
(Figure 3 Legend Continued) pattern and ‘Smiley face’ (c3) obtained by pr

fibroblasts (red). (g and h: scale bar 200 mm). (c4) A bioprinting hydrogel-ba

(d1) Schematic of laser direct-write. (d2) Fabricated microbeads and laden c

MB-231 3D aggregate. Scale bar: 100 mm. Reproduced with permissions fro

Elsevier [17].
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Bioprinted liver-on-a-chip

Liver is the major organ for drug metabolism in the body.

A one-step fabrication process based on 3D bioprinting

has been employed for precise patterning of heterotypic

cell types and biomaterials in a microfluidic platform, in

which the liver function was reproduced [31]. A micro-

fluidic biliary system equipped on a 3D liver-on-a-chip

that is capable of liver cells co-culture and microenviron-

ment modeling has been fabricated using native liver

ECM components [32]. Also, a customer-tailored and

tunable microfluidic channel fabrication method combin-

ing with cell-laden hydrogel constructs has been pre-

sented. Complex 3D-printer modifications and bioinks

synthesis, processing hurdles can be avoided by this

approach [33].

Bioprinted heart-on-a-chip

Heart is the vital organ for pumping blood through the

vasculature to nourish tissues and organs. Endothelial

cells within hydrogels have been printed and seeded with

cardiomyocytes to generate aligned myocardium followed

by embedding into a microfluidic bioreactor for cardio-

vascular toxicity assessment [34]. Also, instrumented

cardiac microphysiological devices have been fabricated

by using 3D printing of six materials. Drug responses

and contractile development of human stem cell-derived

laminar cardiac tissues have been studied in this device

[35]. Most recently, formation of cardiac synthetic mini

tissues derived from hiPSCs in a microfluidic chip has

been achieved. Efficiency of regenerative cell transplan-

tations has been improved [36].

Bioprinted kidney-on-a-chip

Kidney functions as a filter for blood, removing waste

and reabsorbing useful substances, such as glucose. 3D

human renal proximal tubules that are fully embedded

within an ECM and housed in perfusable tissue chips

have been printed. The on-chip proximal tubules have

enhanced epithelial morphology and functional proper-

ties comparing with 2D samples [37]. Also, using a com-

mercial bioprinter, a human proximal tubule model has

been constructed, which can be used to predict clinical

outcomes [38]. Most recently, 3D vascularized proximal

tubule models consisting of adjacent conduits lining

with confluent epithelium and endothelium have been

embedded in a closed-loop perfusion microfluidic system

to investigate renal reabsorption [39].

Bioprinted vasculature-on-a-chip

Vasculature provides essential supports for cell survival in a

human body. A 3D micromolding technique using
inting Fluo-ink (green) and Acri-ink (blue) containing Tomato NIH 3T3

sed microfuidic chip. Scale bar: 1 mm. Laser-assisted printing [17].

ells. Scale bar: 200 mm. (d3) Confocal microscopy images of MDA-

m the American Association for the Advancement of Science [12] and

Current Opinion in Chemical Engineering 2020, 28:1–9
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Figure 4
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3D bioprinting integrated with microfluidic OOCs. Liver-on-a-chip [33]. (a1) Digital designs and corresponding devices (a2) Fluorescent images of

the hUVECs cultured within channels (green showing F-actin and blue showing nuclei). Scale bar: 100 mm. Heart-on-a-chip [36]. (b1) Principle of

on-chip functionalized microtissue by coculture of hiPSC-CMs and normal human cardiac fibroblasts. (b2) Microfluidic chip for cell-laden droplet

generation (above) followed by transforming to microgels (below). Scale bar: 100 mm. (b3) Micrographs of cultured hiPSC-CM/NHCF-Vs at days 1,

8, and 14. Kidney-on-a-chip [39]. (c1) Schematic of 3D vascularized proximal tubule fabrication process. (c2) Fabricated on-chip vascularized

proximal tubule. Scale bar: 10 mm. (c3) Integration of 3D vascularized proximal tubule tissue with a closed-loop perfusion for measuring renal

reabsorption. Vasculature-on-a-chip [42��]. (d1) Adaptations of mathematical space-filling curves to entangled vessel topologies of axial vessel

Current Opinion in Chemical Engineering 2020, 28:1–9 www.sciencedirect.com
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bioprinted agarose template fibers has successfully been

employed to fabricate hydrogel-based functional and per-

fusable microchannel networks for vascularization study

[40]. Cell-laden thick vascularized tissues integrated with

parenchyma, stroma, and endothelium have been printed

and perfused on-chip, establishing a foundation for tissue

generation research [41]. Recently, multivascular networks

and functional intravascular topologies within biocompati-

ble or photopolymerizable hydrogels have been employed

for investigating the oxygenation and flow of human red

blood cells during tidal ventilation and distension of a

proximate airway [42��].

Besides theabove-mentioned,organssuchasbrain [43], skin

[44],bone[45],gut [46],muscle [47]andtumor [48]havealso

been recapitulated in vitro by integrating microfluidics with

3D bioprinting. Examples of microfluidic integration of

bioprinting for constructing novel organs-on-chips are illus-

trated in Figure 4. Albeit mostly being proof-of-concept, the

potential of this technique for the development of various

tissue/organ models has been verified.

Characterization
Characterization of 3D bioprinted OOCs is crucial to

evaluate their development and functions. Biochemical

and biomechanical analyses as well as viability are the

most commonly used methods. However, novel charac-

terization approaches and techniques are still required for

3D printed OOCs [15,49].

Cell viability is an essential parameter for the develop-

ment of OOCs and is the most basic parameter that needs

to be characterized. Mitochondrial activity by using the

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-

lium bromide) assay or its derivatives is commonly used to

determine the viability.

Biochemical studies based on genomic and proteomic

methods are employed for the evaluation of OOCs by

providing genetic (DNA, or RNA) and protein expressions

information. Genes or proteins expression levels in differ-

ent stages of organ model development, drug metabolism

and disease progression can be characterized on-chip. Cell

detaching procedures are often performed on-chip before

biochemical genomic and proteomic assays.

Biomechanical study of OOCs is important since the

stiffness of the fabricated structure (e.g. tissue interface)

affects the cell geometry, differentiation, and the tissue-

level or organ-level physiology. Also, mechanical and

physicochemical traits of the cell-laden hydrogel
(Figure 4 Legend Continued) and helix (up) and interpenetrating Hilbert cu

carriers created by seeding endothelial cells (HUVECs) in the vascular netw

aggregates (Hep) in fibrin gel entrapped by hydrogel anchors. Scale bar: 1 m

Chemical Society [36], the National Academy of Sciences of the United Sta

of Science [42��].
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structures should be examined before manufacturing.

Compression and tensile tests cooperated with mathe-

matical models have been used to assess the mechanical

properties of on-chip models.

Conclusions and future directions
Convergence of 3D bioprinting with OOCs offers auto-

mated and high-throughput platforms for many applica-

tions such as toxicity evaluation, drug discovery and

development. While, current bioprinted methods for

tissue/organ study are still in the early developmental

stage. Many issues including printing resolution, cytotox-

icity and scaffold material should be better resolved. In

brief, from a view of printing resolution, the extrusion-

based printing, which has been the most widely accepted

is still not yet compatible for all design when the on-chip

structures become more sophisticated and heteroge-

neous. SLA has a higher resolution, but the cell viability

is inevitably affected during laser or UV light exposing.

Novel bioprinting processes and bioinks are under con-

tinuing development for these highly fruitful areas.

A recent strategy by adding ‘time’ to 3D printing (termed as

4D printing) based on smart materials has enabled the

fabrication of structures with changeable shapes or func-

tionalities [50]. Under external stimuli, these smart struc-

tures can be actuated to better simulate-specific functions of

organs. In parallel, integration of embedded physical, bio-

chemical and optical sensors with OOCs can record real-

time cell behavior and environmental parameters. All these

innovations will extend the applications of bioprinting inte-

grated OOCs in fundamental research and clinical settings.
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