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Abstract

Mutations in C9orf72 are the most common genetic cause of amyotrophic lateral sclero-

sis (ALS). Accumulating evidence implicates astrocytes as important non-cell autonomous

contributors to ALS pathogenesis, although the potential deleterious effects of astrocytes

on the function of motor neurons remains to be determined in a completely humanized

model of C9orf72-mediated ALS. Here, we use a human iPSC-based model to study the

cell autonomous and non-autonomous consequences of mutant C9orf72 expression by

astrocytes. We show that mutant astrocytes both recapitulate key aspects of C9orf72-

related ALS pathology and, upon co-culture, cause motor neurons to undergo a progres-

sive loss of action potential output due to decreases in the magnitude of voltage-

activated Na+ and K+ currents. Importantly, CRISPR/Cas-9 mediated excision of the

C9orf72 repeat expansion reverses these phenotypes, confirming that the C9orf72 muta-

tion is responsible for both cell-autonomous astrocyte pathology and non-cell autono-

mous motor neuron pathophysiology.
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1 | INTRODUCTION

Although amyotrophic lateral sclerosis (ALS) is characterized by loss of

motor neurons (MNs), accumulating experimental and pathological

evidence reveal the involvement of other cell types that are impli-

cated in non-cell autonomous toxic effects on MN health (Boillee,

Vande Velde, & Cleveland, 2006; Ilieva, Polymenidou, & Cleveland,

2009). Astrocyte pathology is prominent, with an emerging consensus,

particularly from SOD1 based studies, that astrocytes appear critical

to disease progression (Papadeas, Kraig, O'Banion, Lepore, &

Maragakis, 2011; Wang, Gutmann, & Roos, 2011; Yamanaka et al.,

2008). It has also been shown that astrocytes derived from sporadic

or familial cases can, upon co-culture or upon exposure to astrocyte

conditioned media (ACM), be directly toxic to MNs leading to cell

death (Cassina et al., 2008; Di Giorgio, Carrasco, Siao, Maniatis, &

Eggan, 2007; Fritz et al., 2013; Haidet-Phillips et al., 2011; Kia,

McAvoy, Krishnamurthy, Trotti, & Pasinelli, 2018; Madill et al., 2017;

Marchetto et al., 2008; Nagai et al., 2007; Phatnani et al., 2013; Re

et al., 2014; Rojas, Cortes, Abarzua, Dyrda, & van Zundert, 2014). In

contrast, the influence of astrocytes on MN function is unclear and

comparatively understudied. Importantly, altered MN function, specif-

ically perturbations in excitability that may initiate or contribute to a

cascade of excitotoxic disease mechanisms, represent the earliest

observed phenotype in animal models of ALS (Delestree et al., 2014;

Kuo et al., 2004; Pieri et al., 2003; Quinlan, Schuster, Fu, Siddique, &

Heckman, 2011; van Zundert et al., 2008). Changes in MN excitability

have also been reported in ALS patients (Kanai et al., 2012; Vucic &

Kiernan, 2006) and more recently in human induced pluripotent stem

cell (iPSC)-based models of ALS (Devlin et al., 2015; Naujock et al.,

2016; Sareen et al., 2013; Wainger et al., 2014). Studies of MN dys-

function in ALS have primarily focused on cell autonomous mecha-

nisms, whereas a recent study has shown that changes in the

physiological properties of MNs can be mediated by ALS-affected

mouse astrocytes (Fritz et al., 2013). Together, these studies highlight

the need to better understand the nature and functional conse-

quences of astrocyte pathology in ALS.

The finding that sporadic ALS (sALS) is phenotypically and patho-

logically indistinguishable from familial ALS (fALS) (Ajroud-Driss &

Siddique, 2015; Freischmidt, Muller, Ludolph, Weishaupt, & Andersen,

2017; Sreedharan et al., 2008) highlights the value of studying fALS

to determine common pathogenic pathways (Hardiman et al., 2017).

The intronic hexanucleotide repeat expansion GGGGCC (G4C2) in the

chromosome 9 open reading frame 72 (C9orf72) gene is the most

common genetic cause of ALS, accounting for ~40% of fALS

and ~10% of sALS (DeJesus-Hernandez et al., 2011; Renton et al.,

2011). In contrast to extensive studies focused on MN biology and

pathology, the consequences of G4C2 expansion at physiological levels

on astrocytes is understudied (Meyer et al., 2014). Moreover, the func-

tional interaction between MNs and astrocytes is yet to be investigated

in a completely humanized model of C9orf72-mediated ALS.

We and others have previously shown that ALS patient-derived

iPSC lines recapitulate key aspects of ALS pathology and MN dysfunc-

tion (Bilican et al., 2012; Devlin et al., 2015; Donnelly et al., 2013;

Serio et al., 2013; Shi et al., 2018). An important advance in human

iPSC-based disease modeling is the use of paired isogenic control lines

which help establish causality between a given mutation and pheno-

types (Sandoe & Eggan, 2013; Selvaraj, Livesey, & Chandran, 2017;

Wang et al., 2017). Using CRISPR/Cas9-mediated genome editing to

selectively excise G4C2 repeats we have recently shown selective

human MN vulnerability to AMPA receptor mediated excitotoxicity

that is mutation dependent (Selvaraj et al., 2018). In this study, we

have utilized this system to further explore the cell-autonomous and

non-cell autonomous consequences of C9orf72 mutation on iPSC-

derived astrocytes and MNs. We report C9orf72-dependent cell

autonomous astrocyte pathology and astrocyte mediated loss of MN

function independent of overt effects on MN viability. Furthermore,

we suggest possible molecular pathways, highlighted from RNA-Seq

data, which may underlie loss of MN function.

2 | MATERIALS & METHODS

2.1 | Generation of iPSC lines and isogenic control
iPSC lines

Eight iPSC lines were used in this study, including two healthy con-

trols (Con-1 and Con-2), three ALS patient lines carrying the G4C2

repeat expansion in the C9orf72 gene (C9-1, C9-2 and C9-3) and 3 iso-

genic control lines C9-1 (C9-Δ1), C9-2 (C9-Δ2), and C9-3 (C9-Δ3).

IPSCs were generated from fibroblasts using either Sendai virus or

retrovirus expressing the Yamanaka transcription factors (OCT3/4,

SOX2, c-Myc, and KLF4) (Bilican et al., 2012; Devlin et al., 2015;

Selvaraj et al., 2018; Takahashi et al., 2007). These were conducted

under full Ethical/Institutional Review Board approval at the Univer-

sity of Edinburgh (Con-1 and Con-2), at University College London

(C9-1) and at King's College of London (C9-2 and C9-3). The isogenic

control lines of C9-1, C9-2, and C9-3, named C9-Δ1, C9-Δ2, and

C9-Δ3 respectively, were generated by using CRISPR/Cas9-mediated

genome editing to selectively excise the G4C2 repeat expansion as

described in the following section (Ran et al., 2013; Selvaraj et al., 2018).

2.2 | CRISPR/Cas9 gene correction

The C9-Δ1, C9-Δ2, and C9-Δ3, were generated from their respective

parental patient line C9-1, C9-2, and C9-3 which have multiple G4C2

repeats in the wild-type allele and in the mutant allele (Selvaraj et al.,

2018). Two guide RNAs (gRNA-1:50GACTCAGGAGTCGCGCGCTA-30

and gRNA-2: GGCCCGCCCCGACCACGCCC) flanking the G4C2

repeat expansion were cloned into the pSpCas9 (BB)-2A-GFP vector.

C9ORF72 patient iPSCs were transfected with these vectors to induce

double strand break in the DNA sequence at a precise locus resulting in

the deletion of G4C2 repeats. Individual iPSC clones were screened for

deletion of G4C2 using the repeat-primed PCR. One positive clone for

each isogenic control line C9-Δ1, C9-Δ2, and C9-Δ3 was selected, and

Sanger sequencing for the C9orf72 G4C2 locus in these clone
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demonstrated complete deletion of G4C2 repeats in the mutant allele

and one remaining G4C2 in the wild-type allele (Selvaraj et al., 2018).

2.3 | Generation of MNs from iPSCs

Differentiation of iPSCs into a neuronal and MN lineage was per-

formed using minor modifications of previously established and vali-

dated protocols (Amoroso et al., 2013; Bilican et al., 2012; Devlin

et al., 2015). The iPSCs were neutralized to neuroectoderm using dual

SMAD inhibition in Phase I medium for 4–10 days. Neurospheres

were patterned to a caudal, spinal cord identity in Phase II medium for

4–10 days. Caudalized neural stem cells (NSCs) were next ventralized

in Phase III medium for 4–10 days, and then cultured in Phase III-FGF

for another 4–14 days. Caudalized and ventralized NSCs were trans-

itioned to MN maturation medium for 2–6 weeks. These MN spheres

were dissociated into single cells which were plated onto monolayers

of astrocytes for co-culture as described below. Complete media

changes were conducted every 2–3 days during the MN generation

process. Components of the media used are as follows. CDM contains

50% Iscove's Modified Dulbecco's Medium (IMDM) (Invitrogen), 50%

F12, 5 mg/ml bovine serum albumin (BSA, Europa), 1% chemically

defined Lipid 100x (Invitrogen), 450 mM Monothioglycerol (Sigma),

7 mg/ml Insulin (Roche), 15 mg/ml Transferrin (Roche), 1% penicillin/

streptomycin (Invitrogen). Phase I medium contains CDM, 1 mM N-

acetyl cysteine (Sigma), 10 μM Activin Inhibitor (R&D Systems) and

100 μM LDN (Merck Millipore). Phase II medium contains CDM,

1 mM N-acetyl cysteine, 5 ng/ml fibroblast growth factor (FGF;

PeproTech)/heparin (Sigma; 20 μg/ml), and 0.1 μM retinoic acid (Sigma).

Phase III medium contains Advanced Dulbecco's Modified Eagle Medium

(DMEM) Nutrient Mixture F12 (Invitrogen), 1% penicillin/streptomycin,

0.5% GlutaMAX, 1% B-27, 0.5% N-2 supplement, 5 ng/ml FGF

+ Heparin, 1 μM retinoic acid, and 1 μM purmorphamine (Merck Mil-

lipore). Phase III-FGF contains Advanced Dulbecco's Modified Eagle

Medium (DMEM) Nutrient Mixture F12 (Invitrogen), 1% penicillin/strep-

tomycin, 0.5% GlutaMAX, 1% B-27, 0.5% N-2 supplement, 1 μM retinoic

acid 0.5 μM purmorphamine (Merck Millipore). MN maturation medium

contains advanced DMEM/F12, 1% penicillin/streptomycin, 0.5% B-27,

0.5% N-2 supplement, 2 ng/ml Heparin, 10 ng/ml brain-derived neuro-

trophic factor (BDNF; R&D systems), 10 ng/ml glial cell line-derived neu-

rotrophic factor (GDNF; R&D systems), 10 μM forskolin (R&D systems),

0.1 μM retinoic acid, and 0.1 μM purmorphamine. At least 4 iPSC differ-

entiations were performed for each experiment.

2.4 | Generation of astrocytes from iPSCs

IPSCs were neutralized and then converted to spheres as described in

the previous section (Bilican et al., 2012; Serio et al., 2013). Next,

spheres were cultured in MN maturation medium for 2–4 weeks

before being chopped and cultured in NSCR EL20 medium for

4–6 weeks to induce astrogliogenesis. At the end of this conversion

phase, medium was switched to NSCR EF20 medium to maintain the

proliferation of astrocyte progenitor cells (APCs) in spheres. These

astrospheres were dissociated into single cells using the Papain Disso-

ciation System (Worthington Biochemical) and plated onto 6-well

Matrigel (BD Biosciences, 1:80 diluted) coated plates at a density of

7.5 × 105 to obtain monolayers of APCs, which were subsequently

differentiated into astrocytes by switching the medium to AstroMed

CNTF medium for 2 weeks. All media were changed every 2–3 days

during the astrocyte generation process. NSCR EF20 contains Advanced

DMEM/F12 (Invitrogen), 1% N2 supplement (Invitrogen), 1% B-27 sup-

plement (Invitrogen), 1% penicillin/streptomycin (Invitrogen), 1% Glu-

taMAX solution (Invitrogen), 20 ng/ml fibroblast-growth factor 2 (FGF-2;

PeproTech), and 20 ng/ml epidermal growth factor (EGF; R&D Systems).

AstroMED CNTF contains Neurobasal medium (Invitrogen), 2% B-27

supplement (Invitrogen), 1% NEAA (Invitrogen), 1% penicillin/streptomy-

cin (Invitrogen), 1% GlutaMAX (Invitrogen), and 10 ng/ml ciliary neuro-

trophic factor (CNTF; R&D Systems). At least 4 iPSC differentiations

were performed for each line with control and patient iPSC differentia-

tions always run in parallel. For co-culture with enriched populations of

MNs, astrocyte media was modified to contain 0.1% B-27 supplement in

NSCR EF-20 and to 0.2% in AstroMED CNTF.

2.5 | Generation of enriched MN cultures
from iPSCs

Differentiation of iPSCs into a neuronal and MN lineage was per-

formed using a modification of a previously published protocol

(Maury et al., 2015) which allows for generation of an enriched culture

with approximately 50–60% MNs, as evidenced by Isl-1/2+ immuno-

staining within 14–16 days (Selvaraj et al., 2018) and minimal labeling

for the astrocytic marker GFAP (Selvaraj et al., 2018, Figure S2). Neu-

rospheres were dissociated, plated at a density of 30–40,000 cells per

well in 24-well plates (Fisher Scientific) on 13 mm glass coverslips

(VWR) treated overnight with poly-ornithine (0.01%, Sigma-Aldrich), and

further coated with Matrigel (1 in 10 dilution, VWR), fibronectin

(10 μg/ml, Sigma-Aldrich), and laminin (5 μg/ml, Sigma-Aldrich). Plate

down medium consisted of Neurobasal medium, 1% penicillin/strepto-

mycin, 1% GlutaMAX, 1% NEAA, 1% B-27, 1% N-2, 2-Mercaptoethanol

(BME, 0.1 mM, Thermo Fisher Scientific), 10 ng/ml GDNF, 10 ng/ml

BDNF, 10 ng/ml CNTF, 10 ng/ml IGF-1(R&D Systems), 1 μM retinoic

acid, 2.27 μM ascorbic acid (Sigma), 25 μM L-glutamic acid (Sigma), and

1 μM Uridine/ 5-Fluoro-20-deoxyuridine U/FDU (Sigma). Twelve hours

post-plating, fresh media without addition of L-Glutamic acid was added

to cells. From this point onwards media, which contained no L-glutamic

acid but contained U/FDU, was changed on alternate days.

2.6 | Generation of cortical neuron cultures from
human stem cells

A complete and systematic description of the derivation of human corti-

cal neurons from human stem cells can be found in Bilican et al. (Bilican

et al., 2014). Briefly, human cortical neurons were differentiated from

ZHAO ET AL. 3



anterior neural precursors, which were derived from the H9 human

embryonic stem cell line (WiCell), obtained under ethical/IRB approval of

the University of Edinburgh. Experiments were carried out on human cor-

tical neurons that had been differentiated and maintained in culture for at

least 30 days in vitro (DIV). At these time points, around 70% of cells

were neuronal (β3-tubulin+), with little contamination from neural precur-

sor cells (nestin+), astrocytes (GFAP+) or GABAergic (GAD65/67+) inter-

neurons (Bilican et al., 2014; Livesey, Magnani, Hardingham, Chandran, &

Wyllie, 2015). Neurons exhibited markers (VGLUT1+) consistent with an

excitatory identity and also exhibited properties of neurones of the upper

and lower layers of the cortex (Bilican et al., 2014; Livesey et al., 2015).

2.7 | Immunofluorescence

Cells were fixed in 4% (wt/vol) paraformaldehyde for 10 min, perme-

abilized with 0.2% Triton X-100 for 5 min and blocked in 3% (vol/vol)

goat serum (Dako) or donkey serum (Sigma) for 45 min. They were

then incubated in primary antibodies for 45 min followed by second-

ary antibodies for 30 min (Alexa Fluor dyes, 1:1000, Invitrogen). All

antibodies were diluted in the blocking buffer. Nuclei were counter-

stained with DAPI (Sigma) for 5 min and coverslips were mounted on

slides with FluorSave (Merck). All procedures were performed at room

temperature. Primary antibodies used in this study were Vimentin

(1:100, Millipore), NFIA (1:250, abcam), GFAP (1:500, Dako), GFAP

(1:500, Sigma), S100B (1:500, Dako), βIII-tubulin (1:1000, Sigma),

TDP-43 (1:250, Abnova), NANOG (1:250, R&D Systems), SOX2

(1:250, Millipore), TRA-1-60 (1:250, Santa Cruz), OCT3/4 (1:250,

Santa Cruz), SOX1 (1:100, R&D Systems), Nestin (1:1000, Millipore),

Brachyury (1:100, R&D Systems), EOMES (1:600, abcam), FOXA2

(1:100, R&D Systems), GATA-4 (1:100, Santa Cruz), SMI32 (1:250,

Covance), and Caspase-3 (1:500, Abcam).

Fluorescent imaging was performed on fields of view containing

uniform DAPI staining using either an Axio Observer.Z1 (Zeiss) epi-

fluorescence microscope or an LSM710 confocal microscope (Carl

Zeiss). Images were processed and blindly analyzed by using the

ImageJ64 (v 1.47) software.

2.8 | Glutamate uptake assay

2-week old differentiated astrocytes were dissociated into single cells

using Accutase and plated on 96-well plates coated with Matrigel

(1:80 diluted) at a density of 2.5x104 cells per well in AstroMedCNTF

medium. Five days later, astrocytes were exposed to 100 μM L-

glutamic acid (ATT Bioquest), and supernatants were collected at 300,

600 , and 1200, respectively. A negative control was also setup by

exposing astrocytes to 100 μM L-glutamic acid supplemented with

2 mM L-trans-Pyrrolidine-2,4-dicarboxylic acid (PDC, Sigma) for 1200.

Amplite™ Fluorimetric Glutamic Acid Assay Kit (ATT Bioquest) was

used to determine the residual concentrations of L-glutamic acid in

supernatants following the manufacturer's instructions. The glutamate

uptake was calculated by subtracting the remaining concentration

from 100 μM. The cell number in each well was determined by using a

CyQUANT® NF Cell Proliferation Assay Kit (Life Technologies,

C35006) following the manufacturer's instructions. The glutamate

uptake was normalized to the cell number and presented as uptake

concentration per 1,000 cells.

2.9 | Calcium imaging

2-week old differentiated astrocytes were dissociated into single

cells using Accutase and plated on μ-Slide 8 Well Glass Bottom (ibidi)

chambers coated with Matrigel (1:80 diluted) at a density of

1.5 × 105 cells per well. Fourdays later, astrocytes were loaded with

fluo-4 acetoxymethyl ester (Fluor-4 AM) (Life Technologies) diluted

in Neurobasal® Medium (Invitrogen) for 1 hour at 37�C. Astrocytes

were then washed for three times and left in Neurobasal® Medium

for 30 min at 37�C. A negative control was set up by applying 50 μM

2-APB (Calbiochem), an inhibitor of the IP3-dependent calcium

release, at this stage. The medium was switched to Dulbecco's

Phosphate-Buffered Saline (Life Technologies) prior to imaging.

Glass beads (200 μm diameter) were dropped on top of astrocyte

cultures as a mechanical stimulus. Time-lapse imaging was per-

formed using an Axio Observer.Z1 (Carl Zeiss) epifluorescence

microscope at 10× magnification with a 488 nm excitation filter at

37�C and 5% CO2.

2.10 | qRT-PCR

Total RNA was isolated from 2-week old differentiated astrocytes

using an RNeasy Mini Kit (Qiagen) following the manufacturer's

instructions. Five hundred nanograms of RNA was reverse transcribed

to complementary DNA (cDNA) using a DyNAmocDNA Synthesis Kit

(Thermo Scientific) following manufacturers' instructions. RT-PCR

reactions were performed in triplicate using a DyNAmo™ ColorFlash

SYBR® Green qPCR Kit (Thermo Scientific, F-416) following the

manufacturers' instructions, and a C1000™ Thermal Cycler with a

CFX96 Real-time System (Bio-Rad) was used to conduct the cycling.

Primer sequences (50à30) are C9orf72 total F TGTGACAGTTGGA-

ATGCAGTGA, C9orf72 total R GCCACTTAAAGCAATCTCTGTCTTG,

Beta-Actin F GTTACAGGAAGTCCCTTGCCATCC, and Beta-Actin R

CACCTCCCCTGTGTGGACTTGGG. The CFX Manager™ Software (Bio-

Rad) with the 2-ΔΔCt method was used to calculate relative gene expres-

sion levels.

2.11 | Western blot

2-week old differentiated astrocytes were lysed in cold radio-

immunoprecipitation assay (RIPA) buffer (50 mM Trizma® base,

150 mM NaCl, 1% TritonX-100, 0.5% sodium deoxycholate, 0.1%

SDS, and 2 mM EDTA, all from Sigma) supplemented with 1× prote-

ase inhibitor (Roche) and 1× phosphatase inhibitor (Roche), and
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incubated for 30 min on ice. Lysate was then centrifuged at

13000 rpm for 30 min at 4�C, and the resulting supernatant was col-

lected as the RIPA-soluble fraction. RIPA-insoluble pellets were fur-

ther washed with RIPA buffer once and then dissolved in Urea buffer

(7 M Urea, 2 M Thiourea, 4% CHAPS, and 30 mM Trizma® base, all

from Sigma) supplemented with 1× protease inhibitor and 1× phos-

phatase inhibitor of a volume in proportion to the soluble fraction.

Sonication was performed to further dissolve the protein. After centri-

fugation at 13000 rpm for 30 min at 4�C, the supernatant was col-

lected as the RIPA-insoluble fraction.

Protein concentrations in the RIPA-soluble fraction were deter-

mined using a Pierce™ BCA Protein Assay Kit (Thermo Scientific) fol-

lowing the manufacturer's instructions, and 10 μg of protein of each

sample was loaded in an 8–20% Precise™ Protein Gel (Thermo Scien-

tific) for SDS-PAGE. The amount of insoluble protein was adjusted

based on Coomassie Brilliant Blue staining on a duplicate gel to ensure

equal loading across samples. Separated proteins were transferred to

an Immobilon-FL PVDF membrane (Millipore) and blocked in Odyssey

Blocking Buffer (LI-COR) for an hour at room temperature. Primary

antibodies diluted in Odyssey Blocking Buffer (LI-COR) were applied

at 4�C overnight. After three washes with 0.1% PBS-Tween, IRDye®

Secondary Antibodies (LI-COR) (1:15000 diluted in Odyssey Blocking

Buffer) were applied for 1 hour at room temperature followed by

another 3 washes with 0.1% PBS-Tween. Membranes were imaged

using an Odyssey® Fc Imager (LI-COR), and images were processed

and analyzed using the Image Studio™ software (LI-COR). Primary

antibodies used in this study were TDP-43 (Proteintech 1:2000),

GAPDH (Calbiochem, 1:15000), C9ORF72 (Santa Cruz, 1:2000), and

poly-GP (Proteintech, 1:2000).

2.12 | RNA-fish

Astrocytes on glass coverslips were fixed with 4% paraformaldehyde

(Agar Scientific) for 15 min at room temperature followed by

permeabilization in 70% ethanol at 4�C overnight. Cells were then re-

hydrated in 50% formamide (Sigma)/2x SSC (Sigma) for 10 min at

room temperature and blocked in hybridization buffer (50% Formam-

ide (Sigma), 2×SSC (Sigma), 10% Dextran Sulfate (Millipore), 1 mg/ml

Yeast tRNA (Invitrogen) and 1 mg/ml Salmon Sperm DNA (Invitrogen))

for 30 min at 45�C. 50 ng of an Alexa Fluor® 546-conjugated

(GGCCCC)4 probe (IDT) diluted in the hybridization buffer was

applied on cells for 2 hours at 45�C in a humidified chamber. After

the hybridization, cells were washed twice with 50% formamide/2×

SSC for 30 min at 45�C and then once with 2× SSC for 30 min at

room temperature. After another three washes with PBS at room

temperature, immunofluorescence imaging was performed as described

previously.

As controls, cells were treated with either 3 U/ml DNase (Life

Technologies) or 100 μg/ml RNase (Sigma) diluted in 2x SSC for 1 hour

at 37�C prior to the hybridization step. In addition, an anti-sense RNA

probe against the CCTG repeat expansion was also applied on cells to

assess the specificity of the (GGCCCC)4 probe.

2.13 | LDH assay

Two-week old differentiated astrocytes were dissociated into single

cells using Accutase and plated on 96-well plates coated with Matrigel

(1:80 diluted) at a density of 2.5 × 104 cells per well. Cells were

washed once with Neurobasal® Medium prior to replacement with

fresh AstroMed CNTF medium. Twenty-four hours later, conditioned

medium was collected and the concentration of lactate dehydroge-

nase (LDH) was measured using a CytoTox-ONE™ Homogeneous

Membrane Integrity Assay (Promega) following the manufacturer's

instructions.

2.14 | Population viability assay

APCs were plated at a density of 1.5x105 cells per well in 24-well

plates on plastic coverslips (Thermo Scientific) coated with laminin

(Sigma), fibronectin (Sigma), and Matrigel (BD Biosciences) in NSCR

EF20 medium for 5–7 days followed by differentiation into astrocytes

for a further 2 weeks in AstroMED CNTF medium. Control iPSC-

derived MN progenitors were dissociated with the Papain Dissocia-

tion System (Worthington Biochemical) and plated at a density of

5 × 104 cells per well on top of the astrocytes once the astrocyte

medium had been removed. MN plate down medium consisted of

Neurobasal medium, 1% penicillin/streptomycin, 0.5% GlutaMAX,

0.5% B-27, 0.5% N-2 Supplement, 20 ng/ml basic FGF, 1 μM retinoic

acid, 1 μM purmorphamine, 1 μM mouse Smo agonist SAG (Merck

Millipore). Twenty-four hours post MN plating, 20 ng/ml CNTF; R&D,

10 ng/ml GDNF, and 10 μM forskolin were added, with this medium

used until day 14, feeding every 3 days. From day 14, RA, SAG,

purmorphamine and forskolin was removed from the medium, with

cells then maintained for up to 10 weeks.

Population cell viability of control iPSC-derived MNs was per-

formed with the observer blinded to the cell lines by counting the

number of MNs on astrocytes stained with the MN marker SMI-32,

the apoptotic marker caspase-3 and the nuclear marker DAPI. Twenty

images were taken from each line at weeks 5–6 and 7–10 post-

plating.

2.15 | RNA-Seq

Total RNA from mature, iPSC-derived astrocytes was assessed for

quality (Agilent Bionalyzer) and quantity (Invitrogen Qubit) before

library preparation. Illumina libraries were prepared from 1 μg of total

RNA using TruSeq RNA Sample Prep Kit v2 with a 10 cycle enrich-

ment step as per the manufacturer's recommendations. Final libraries

were pooled in equimolar proportions before Illumina sequencing on a

HiSeq 2500 platform using 100 base paired-end reads. Reads were

mapped to the primary assembly of the human (hg38) reference

genome contained in Ensembl release 90 (Zerbino et al., 2018). Align-

ment was performed with STAR, version 2.5.3a (Dobin et al., 2013).

Tables of per-gene read counts were generated from the mapped
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reads with featureCounts v1.5.2 (Liao, Smyth, & Shi, 2014). Differen-

tial expression analysis was then performed using DESeq2 (R package

version 1.18.1) (Love, Huber, & Anders, 2014). Gene ontology enrich-

ment analysis was performed using topGO (R package version 2.30.1)

(Alexa, Rahnenfuhrer, & Lengauer, 2006).

2.16 | Electrophysiology

Whole-cell patch-clamp recordings were used to assess the function-

ality of iPSC-derived MNs. Voltage-clamp mode was used to investi-

gate intrinsic membrane properties. Current-clamp mode was used to

investigate the firing properties of MNs. Experiments were carried out

in a recording chamber which was perfused continuously with oxy-

genated artificial cerebral spinal fluid (aCSF) at room temperature

(22–24�C). Whole-cell patch-clamp recordings were made from cells

visualized by infrared-differential interference contrast (IR-DIC)

microscopy using an Olympus upright BX51WI microscope with a

40X submersion lens. Patch electrodes (4.0–5.0 MΩ resistance) were

pulled on a Sutter P-97 horizontal puller (Sutter Instrument Company,

Novato, CA) from borosilicate glass capillaries (World Precision Instru-

ments, Sarasota, FL). Recorded signals were amplified and filtered

(4 kHz low-pass Bessel filter) using a MultiClamp 700B amplifier

(Axon Instruments, Union City, CA) and acquired at ≥10 kHz using a

Digidata 1440A analog-to-digital board and pClamp10 software (Axon

Instruments). Whole-cell capacitance (Cm), input resistance (RN),

series resistance (RS), and resting membrane potential (RMP) values

were calculated using pClamp10 software. Only cells with an

Rs < 20 MΩ, a RMP more hyperpolarized than −20 mV and

RN > 100 MΩ were included in data analysis. Rs values were not sig-

nificantly different between control iPSC-derived MNs co-cultured

with control, C9orf72 or gene edited iPSC-derived astrocytes. Cells

were defined as neurons if they had clear fast-inactivating inward cur-

rents (≥50 pA). Recordings from glial cells were excluded from all ana-

lyses. An on-line P4 leak subtraction protocol was used for all

recordings of voltage-activated currents. Descriptions of voltage and

current-clamp protocols are provided in the results section.

The aCSF used for all electrophysiological recordings contained

the following in mM; 127 NaCl, 3 KCl, 2 CaCl2, 1 MgSO4, 26 NaHCO3,

1.25 NaH2PO4, 10 D-glucose (equilibrated with 95% O2 and 5% CO2

at room temperature, pH 7.45; osmolarity, ~ 310 mOsm). The pipette

solution contained (in mM): 140 potassium methane-sulfonate,

10 NaCl, 1 CaCl2, 10 HEPES, 1 EGTA, 3 ATP-Mg, 0.4 GTP,

(pH 7.2–7.3, adjusted with KOH; osmolarity adjusted to ~ 300 mOsm

with sucrose).

Electrophysiological data were analyzed using Clampfit10 soft-

ware (Axon Instruments). Data from control iPSC-derived MNs co-

cultured with C9orf72 iPSC-derived astrocytes lines (3 lines) were

pooled for all analyses. Peak Na+ currents and peak K+ currents (log10

transformed), Cm, RN, and RMP were compared across the three dif-

ferent co-culture groups using one-way ANOVAs.

For the purposes of statistical comparisons, action potential gen-

eration was classified as either present or absent. These binary data

were fitted with a general linear model and contrasts were made using

Wald's tests and p values adjusted using a Bonferroni correction.

2.17 | Statistics

At least three independent derivations of astrocytes and MNs were

used in each assay. All data are presented as mean ± S.E.M. Differ-

ence between means of two groups was analyzed by two-sided Stu-

dent's t-test, whereas difference between means of three or more

groups were analyzed by one-way ANOVA with Bonferroni correction

or Turkey's post-hoc test. Two-way ANOVA was performed where

two independent factors were involved. For all analyses, the null

hypothesis was rejected at 0.05.

3 | RESULTS

3.1 | Generation of functional astrocytes from
iPSCs of healthy controls and C9orf72 ALS patients

Dermal fibroblast derived iPSCs were generated from two healthy

individuals (Con-1 and Con-2), three ALS patients carrying the

C9orf72 hexanucleotide repeat expansion (C9-1, C9-2, and C9-3) as

well as isogenic control lines for C9-1, C9-2, and C9-3 wherein the

G4C2 repeat expansion was corrected using CRISPR/Cas9 mediated

genome editing (C9-Δ) (Selvaraj et al., 2018). All iPSC lines were kar-

yotypically normal, expressed pluripotent stem cell markers and were

able to be differentiated in vitro into three germ layers (Figure S1a,b).

Repeat-primed PCR was used to confirm both the presence of G4C2

repeat expansion in all three C9orf72 mutant lines and its absence in

control and gene corrected lines (Figure S1c).

We next generated astrocyte progenitor cells (APCs) from iPSC

lines and differentiated them into astrocytes using a previously

established protocol (Serio et al., 2013). Immunocytochemistry

showed high expression of APC markers vimentin and nuclear factor

I-A (NFIA), and quantitative immunolabeling at 2 weeks post differen-

tiation revealed >90% of cells positive for astrocyte markers, S100

calcium-binding protein B (S100B) and glial fibrillary acidic protein

(GFAP). Comparable differentiation efficiency was observed across all

six iPSC lines (Figure 1a,b). Functional evaluation of the iPSC-derived

astrocytes was next undertaken. All lines demonstrated propagation

of calcium waves upon mechanical stimulation that was blocked by

application of 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of

ionisitol-3-phosphate (IP3)-dependent calcium release (Figure 1c).

Astrocytes from all lines also exhibited the ability to take up extra-

cellular L-glutamic acid in a time-dependent manner with no differ-

ences observed between lines (Figure 1d). Clearance of glutamate

was reversed by the glutamate transporter inhibitor L-trans-

pyrrolidine-2,4-dicarboxylic acid (PDC) (Figure 1d). These data dem-

onstrate that the presence of the G4C2 repeat expansion does not

affect differentiation efficiency or basic functional properties of

astrocytes.
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3.2 | Mutant astrocytes manifest RNA foci and
dipeptide repeats that are reversed upon gene
correction

C9orf72 is believed to cause disease by three putative mechanism(s);

haploinsufficiency, sequestration of RNA binding proteins by RNA foci

and/or di-peptide repeat (DPR) mediated toxicity (Mizielinska &

Isaacs, 2014; Shi et al., 2018; Tabet et al., 2018). As intranuclear RNA

foci are observed in astrocytes in post-mortem derived material from

C9orf72 patients (Lagier-Tourenne et al., 2013), we first used fluo-

rescent in situ hybridization (FISH) to confirm the presence of abun-

dant intranuclear RNA foci in mutant astrocytes that were absent in

controls (Figure 2a). Foci were absent upon RNase treatment but

observed with DNase treatment validating that they are bona-fide

RNA foci (Figure S2). In addition, no foci were detected in C9orf72

mutant astrocytes when using a probe against the myotonic dystro-

phy type 2 (DM2) repeat expansion (CCTG)n, confirming the speci-

ficity of the G4C2 anti-sense probe (Figure S2). Quantification of

RNA FISH revealed up to 60% of mutant astrocytes contained

nuclear foci with no foci observed in control astrocytes (Figure 2b,c).

Notably, RNA foci were absent in astrocytes derived from the gene-

corrected C9-Δ line (Figure 2a–c), demonstrating a direct causal

link between C9orf72 mutation and the formation of RNA foci in

astrocytes.

We next examined the transcript levels of total C9orf72 in iPSC-

derived control and mutant astrocytes. C9orf72 transcripts detected

in astrocytes were almost four-fold less compared to cortical neurons

derived from a control human embryonic stem cell line (Figure 2d).

These data are in agreement with the in vivo finding that C9orf72 is

more highly expressed in neurons compared to astrocytes (Jiang et al.,

2016; Suzuki et al., 2013). Although no difference between control

and mutant astrocytes was evident when data from all lines were

pooled, a significant reduction was detected when comparing C9-3

astrocytes directly to its isogenic control C9-Δ astrocytes (Figure 2d;

C9-3, 0.482 ± 0.039, n = 5; C9-Δ, 0.868 ± 0.129, n = 4; p < .05, Stu-

dent's t-test). We further performed western blot analysis in iPSC

F IGURE 1 Generation and characterisation of astrocytes from iPSCs. (a) Representative images of vimentin and NFIA immunostaining in
astrocyte progenitors (upper panel) and S100B and GFAP immunostaining in 2-week old astrocyte cultures (lower panel). (Scale bars: 50 μm).
(b) Percentage of S100B+, GFAP+ and βIII-tubulin+ cells in 2-week old astrocyte cultures derived from various iPSC lines (N = 3–7, at least
400 cells per cell line per experiment, one-way ANOVA with Bonferroni correction). (c) Representative calcium imaging showed that iPSC-derived
astrocytes could propagate calcium waves under mechanical stimulation (upper panel), which was absent in the presence of 2-APB (lower panel).
(Arrows: location of mechanical stimulation at time 0 s; scale bars: 50 μm). (d) The glutamate uptake assay confirmed the capability of glutamate
clearance in iPSC-derived astrocytes without significant difference across various iPSC lines. Application of PDC from 00 to 1200 was used as a
negative control (N = 3–6, two-way ANOVA with Bonferroni correction) [Color figure can be viewed at wileyonlinelibrary.com]
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derived astrocytes and did not observe reduction in C9ORF72 protein

levels (Figure S3).

Recent reports have shown that the G4C2 repeat expansions are

translated by repeat-associated non-ATG (RAN) translation generat-

ing five different di-peptide repeats (Ash et al., 2013; Donnelly et al.,

2013; Mori et al., 2013). Using a commercially available antibody

detecting poly-GP DPR, we performed western blot analysis on

urea-soluble protein fractions isolated from control and mutant

astrocyte samples. Two bands of ~60 kD were detected only in C9-2

and C9-3 astrocytes but not in control astrocytes (Figure 2e). Impor-

tantly, the bands found in C9-3 astrocytes were absent in astrocytes

derived from its isogenic control C9-Δ (Figure 2e). However, no

F IGURE 2 Rescue of mutant specific astrocyte pathology via gene editing. (a) RNA FISH showed nuclear RNA foci (arrow heads) in mutant
astrocytes which were abolished in gene edited astrocytes C9-Δ (cells were co-stained with an astrocyte marker GFAP; the lower panel shows
enlarged images of areas indicated by squares in the upper panel; scale bars, 10 μm—upper panel, 2.5 μm—lower panel). (b) Percentage of 2-week
old astrocytes positive for nuclear RNA foci across various iPSC lines. (c) Average number of RNA foci per cell in 2-week old astrocytes derived
from various iPSC lines. (d) Differentiated human astrocytes had significantly lower C9orf72 transcript levels compared to cortical neurons, and a
significant reduction of C9orf72 transcript levels was detected when comparing C9-3 astrocytes to its isogenic control C9-Δ astrocytes. (ns, not
significant, between control and C9; #, p < .05, between C9-3 and C9-Δ; Student's t-test). (e) A western blot of urea-soluble protein fraction
showed presence of the poly-GP DPR (indicated by red arrow heads) in C9-2 and C9-3 astrocytes, which was absent in the gene edited C9-Δ
astrocytes. (f) A population-based LDH release assay revealed no differences in viability under basal culture conditions either between control
and mutant astrocytes or between the isogenic pair (ns, not significant; Student's t-test) [Color figure can be viewed at wileyonlinelibrary.com]
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poly-GA and poly-PA DPR was detected in mutant astrocytes (data

not shown).

TDP-43 proteinopathy is a pathological hallmark of ALS with

cytoplasmic misaccumulation of TDP-43 found in MNs and glial cells

(Arai et al., 2006; Ling, Polymenidou, & Cleveland, 2013; Neumann

et al., 2006). However, using immunocytochemical labeling of TDP-43

we found predominantly nuclear localization (Figure S4a) with no dif-

ference in nuclear or cytoplasmic TDP-43 intensity upon densitomet-

ric analysis between control and mutant astrocytes, or between C9-3

and C9-Δ astrocytes (Figure S4b,c). In addition, quantitative immuno-

blot analysis showed equivalent protein levels of soluble TDP-43 in

astrocytes derived from all six iPSC lines (Figure S4d,e).

3.3 | Mutant astrocytes cause control MNs to lose
functional output without overtly effecting cell
viability

Accumulating evidence from pathological and experimental studies

suggests that astrocytes may both undergo degeneration in ALS

(Serio et al., 2013; Tong et al., 2013) and exert toxic effects on MNs

(Ilieva et al., 2009). To first address whether G4C2 expansion adversely

affects the viability of isolated astrocytes, we undertook LDH assays

that showed no difference between control and C9orf72 mutant

astrocytes (Figure 2f; ns, not significant; student t-test). We next co-

cultured mutant astrocytes with wild-type MNs and determined MN

viability by quantitative caspase-3 and SMI-32 counts. No difference

in MN survival was found even in co-cultures maintained for up to

10 weeks post-plating (Figure 3a–c; ns, not significant; one-way

ANOVA).

In view of the absence of any viability differences in co-cultures

and our previous finding of mutant iPSC-derived MNs demonstrating

physiological dysfunction prior to any changes in survival (Devlin

et al., 2015), we next examined whether mutant astrocytes affect MN

function. To facilitate comparisons with our previous study (Devlin

et al., 2015), MNs derived from the same control iPSC line (Con-2)

that we used in our previous work were co-cultured with astrocytes

for up to 10 weeks post-plating. Electrophysiological analyses were

used to investigate whether patient iPSC-derived astrocytes had any

effect on the function of control MNs. Whole-cell patch-clamp

recordings were obtained from the largest neurons visualized via IR-

DIC microscopy in the co-cultures from 3 to 10 weeks post MN plat-

ing. Selecting the largest neurons ensured recordings were predomi-

nantly obtained from MNs (Devlin et al., 2015).

We first compared the passive membrane properties of control

MNs co-cultured with astrocytes from a healthy individual (Con-2),

three ALS patients carrying the C9orf72 hexanucleotide repeat expan-

sion (C9-1, C9-2, and C9-3) as well as an isogenic control line for

C9-3 (C9-Δ). For these and all other electrophysiological analyses,

data were pooled for control MNs co-cultured with mutant astrocytes

(see Figure S5 for data from individual lines). At weeks 3–4 post-plat-

ing, whole-cell capacitance (Cm) values were similar across MNs plated

on control, mutant and gene edited-astrocytes (see Table 1 for

x ± SEM and sample sizes; one-way ANOVA with Tukey's honest sig-

nificant difference). From weeks 5–10, MNs plated on mutant astro-

cytes had smaller Cm values compared to those on gene-edited

astrocytes and from weeks 7–10 compared to MNs on control

F IGURE 3 Mutant astrocytes have no clear impact on MN
viability. (a,b) Quantitative analysis of the apoptotic marker caspase-3
(a) and the MN marker SMI-32 (b) reveal no effect of mutant
astrocytes on MN viability in long-term cultures (20 fields of view [F.
O.V] per time-point per line for minimum of 3 differentiations, one-
way ANOVA). (c) Representative images of Caspase-3 and SMI-32
immunostaining in MNs co-cultured with control, mutant and gene-
edited astrocytes at 6 and 9 weeks post MN plating (scale bars:
20 μm) [Color figure can be viewed at wileyonlinelibrary.com]
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astrocytes (Table 1). Input resistance (RN) values were similar in MNs

co-cultured with control, mutant and gene-edited astrocytes through-

out the time period studied (Table 1). MNs co-cultured with mutant

astrocytes had a more depolarized resting membrane potential (RMP)

at weeks 3–4 compared to MNs co-cultured with gene-edited astro-

cytes (Table 1; p< .05, one-way ANOVA with Tukey's honest signifi-

cant difference). However, resting membrane potential did not differ

at other time points in co-culture. These findings indicate that

C9orf72 patient iPSC-derived astrocytes cause time-dependent

changes to some of the passive membrane properties of control iPSC-

derived MNs.

As reported previously (Devlin et al., 2015), current injection

elicited four output patterns described as repetitive, adaptive, single,

and no firing, in MNs cultured on astrocytes (Figure 4a). Repetitive fir-

ing was defined as a train of action potentials that lasted for the dura-

tion of the square current injection (1 s), while adaptive firing was

defined as multiple action potentials that stopped before the end of

the current stimuli. Cells defined as having an adaptive output pattern

were unable to repetitively fire in response to any of the series of cur-

rent steps applied. In order to compare the excitability of repetitively

firing MNs co-cultured with control, mutant or gene-edited astro-

cytes, frequency-current (f-I) relationships were generated from

responses to a series of injected current steps (0 to 145 pA, in 10 pA

increments, 1 s duration). Comparisons were performed on data

pooled from recordings of repetitively firing cells at weeks 2–6 post

MN plating. Analyses of the slope of the combined f-I relationship

TABLE 1 Passive membrane properties

Passive membrane properties MNs on control astros MNs on C9 astros MNs on C9-Δ astros

Cm (pF)

Weeks 3–4 23.8 ± 0.9 (n = 50) 26.2 ± 0.8 (n = 153) 27.3 ± 1.1 (n = 74)

Weeks 5–6 25.6 ± 1.4 (n = 53)†††† 33.4 ± 1.6 (n = 49)

Weeks 7–10 27.2±1.6 (n=43) 20.2 ± 1.1* (n = 61)***†††† 31.2 ± 2.6 (n = 33)

RN (MΩ)

Weeks 3–4 540 ± 45 579 ± 38 564 ± 46

Weeks 5–6 377 ± 38 391 ± 44

Weeks 7–10 457 ± 48 514 ± 55 470 ± 62

RMP (mV)

Weeks 3–4 −48.3 ± 1.9 −49.5 ± 1.2 −42.0 ± 1.7

Weeks 5-6 −44.0 ± 1.8† −50.2 ± 2.2

Weeks 7-10 −49.8 ± 2.1 −43.1 ± 1.5 −43.4 ± 2.4

*Significantly different to controls (*** p < .001; one way ANOVA with Tukey's honest significant difference).; †Significantly different to the gene-edited

line C9-Δ († p < .05; †††† p < .0001; one way ANOVA with Tukey's honest significant difference).

F IGURE 4 iPSC-derived astrocytes from ALS patients cause loss of functional output in healthy control iPSC-derived MNs. (a) Representative
examples of the four categories of firing observed in iPSC-derived MNs (repetitive, adaptive, single or no firing). (b) Percentage of cells exhibiting
each firing category in MNs co-cultured with astrocytes derived from various iPSC lines across weeks 3–10 post plating (Weeks 3–4: Control,
n = 47; C9, n = 151; C9-Δ, n = 73; Weeks 5–6: C9, n = 38; C9-Δ, n = 48; Weeks 7–10: Control, n = 40; C9, n = 58; C9-Δ n = 34; ****, p < .0001,
significantly different to MNs on control astrocytes; ††††, p < .0001, significantly different to MNs on the gene-edited C9-Δ astrocytes; general
linear model with multiple Wald's tests and Bonferroni correction) [Color figure can be viewed at wileyonlinelibrary.com]
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found no differences between MNs co-cultured with control, mutant

or gene-edited astrocytes. However, rheobase current was greater in

MNs plated on mutant astrocytes compared to MNs plated on control

astrocytes (control, x 15.6 ± SEM 1.4 pA, n = 16; mutant, 26.1 ± 3.2,

n = 26; gene-edited, 22.3 ± 1.2, n = 15; p< .05, one-way ANOVA),

suggesting some degree of hypoexcitability in MNs co-cultured with

mutant astrocytes (data not shown). Clear evidence of hypo-

excitability (reduced output) was next revealed when the firing pat-

terns of control iPSC-derived MNs co-cultured with control, mutant

or gene-edited astrocytes were compared. The relative proportions of

firing versus non-firing cells were similar in all cultures from weeks

3–4 post MN plating (Figure 4b; control firing, 82.9%, n = 47; mutant

firing, 78.1%, n = 151; gene-edited firing, 84.9%, n = 73). However, at

weeks 5–6 and 7–10 post MN plating, the number of cells able to fire

action potentials decreased significantly in MNs co-cultured with

mutant astrocytes while the ratio of firing versus non-firing cells

remained unchanged in MNs co-cultured with control or gene-edited

astrocytes throughout these time-points (Figure 4b; Weeks 5–6:

mutant firing, 40.3%, n = 38; gene-edited firing, 93.7%, n = 48;

p< .0001; Weeks 7–10: control firing, 85%, n = 40; mutant firing,

12.0%, n = 58; gene-edited firing, 79.4%, n = 34; p< .0001, general lin-

ear model with multiple Wald's tests and Bonferroni correction).

These data demonstrate a clear loss of functional output in control

MNs co-cultured with mutant astrocytes compared to control or gene

edited astrocytes, consistent with the idea that mutant astrocytes

alone are sufficient to cause physiological toxicity to MNs.

3.4 | Mutant astrocytes cause loss of voltage-
activated currents in control MNs

To investigate the mechanisms underlying the progressive loss of

action potential output in control MNs co-cultured with mutant astro-

cytes, voltage-clamp recordings were performed to assess voltage-

activated currents involved in action potential generation. Fast

inactivating Na+ currents were first investigated by using a series of

voltage steps (−70 to 20 mV, 2.5 mV increments, 10 ms duration)

from a holding potential of −60 mV (Figure 5a). We found no differ-

ences in the current (I–V) relationships (Figure S6a) or peak Na+ cur-

rents between MNs co-cultured with control, mutant or gene-edited

astrocytes at 3–4 weeks post MN plating (Figure 5b; peak current:

control, x 2,232± s.e.m. 211 pA, n = 49; mutant, 2,067± 120 pA,

n = 153; gene-edited 2,110±209 pA, n = 74). However, from weeks

5–10 post MN plating, there was a progressive decrease in peak Na+

currents in MNs co-cultured with mutant astrocytes compared to co-

cultures with control or gene-edited astrocytes (Figure 5b and

Figure S6b; Weeks 5–6: mutant x 1,174± s.e.m. 233 pA, n = 53; gene-

edited, 3,795±371, n = 49; Weeks 7–10: control, 2,480±268 pA,

n = 44; mutant, 458±113 pA, n = 60; gene-edited 2,147±345 pA,

n = 33; p< .0001, one-way ANOVA after log transformation with

Tukey's post-hoc test).

We next investigated whether the progressive loss of Na+ cur-

rents reflected a more general decrease in voltage-activated currents

in control MNs co-cultured with mutant astrocytes. Persistent K+ cur-

rents were measured by using a series of voltage steps (−70 to

40 mV, 10 mV increments, 500 ms duration) from a holding potential

of −60 mV (Figure 5c). At weeks 3–4 post MN plating, peak K+ cur-

rents were comparable in MNs co-cultured with control, mutant or

gene-edited astrocytes (Figure 5d and Figure S6c; Peak current: con-

trol, x 1,788± s.e.m. 148 pA, n = 46; mutant, 1913±98 pA, n = 147;

gene-edited, 1,634±127 pA, n = 74). Similar to Na+ currents, peak K+

currents progressively declined in control MNs co-cultured with

mutant astrocytes from weeks 5–10 compared to MNs co-cultured

with control or gene-edited astrocytes (Figure 5d and Figure S6d;

Weeks 5–6: mutant, x 1,070± SEM 165 pA, n = 53; gene-edited,

2,673±233 pA, n = 43; Weeks 7–10: control, 2069±160 pA, n = 41;

mutant, 438 ±99 pA, n = 60; gene-edited, 1816±248 pA, n = 33;

p< .0001, one-way ANOVA after log transformation with Tukey's

post-hoc test).

3.5 | Functional perturbations in C9orf72 mutant
MNs are mediated by mutant astrocytes

We, and others, have previously shown that mutant C9orf72 MN cul-

tures demonstrate functional perturbations (Devlin et al., 2015;

Naujock et al., 2016; Sareen et al., 2013). However, all these studies,

including our own (Devlin et al., 2015), used MN generation protocols

that also resulted in the production of a significant fraction of astro-

cytes (up to approximately 20%). One interpretation of these earlier

findings is therefore that the observed pathophysiological phenotype

was a consequence of contaminant astrocytes and not cell processes

intrinsic to MNs. To address this possibility, we next used a recently

published method to generate highly enriched mutant C9orf72 MN

cultures with negligible astrocyte contamination (Maury et al., 2015;

Selvaraj et al., 2018). In cultures derived from the C9orf72 ALS patient

lines C9-1 & C9-3 and their respective gene edited controls (C9-Δ1 &

C9- Δ3), we assessed firing output and voltage-gated Na+ and K+ cur-

rents using the same protocols described above for co-culture

experiments.

Even after 7–12 weeks of culture, we found no difference in the

proportion of cells able to fire action potentials in C9orf72 versus

gene-edited MN cultures (Figure 6a; Weeks 7–12: mutant firing,

94.8%, n = 115; gene-edited firing, 96.7%, n = 92; fisher's exact test).

We also observed equivalent voltage gated Na+ and K+ currents in

recordings from C9orf72, and gene-edited MN cultures at weeks

7–12 (Figure 6b–e; Peak Na+ current: mutant, x 2,641± s.e.m. 201 pA,

n = 110; gene-edited, 3,043±267 pA, n = 82; Peak K+ currents:

mutant, 1,844±108pA, n = 110; gene-edited, 1,772±126 pA, n = 82;

two tailed, equal variance, unpaired student t-test).

Next, to ensure that the lack of pathophysiology was not related

to differences in differentiation protocols, we co-cultured these same

highly enriched C9orf72 (C9-2 & C9-3) and gene-edited (C9-Δ2 &

C9-Δ3) MNs with mutant (C9-2, C9-3) and gene-corrected (C9-Δ2,

C9-Δ3) astrocytes respectively. The presence of mutant, but not

gene-corrected astrocytes, was again sufficient to induce altered

ZHAO ET AL. 11



function in MNs as evidenced by a reduction in the proportion of cells

able to fire action potentials (Figure 6f; Weeks 7–12; mutant firing,

42.8%, n = 84; gene-edited firing, 86.1%, n = 65; p < .0001, fisher's

exact test) and decreases in Na+ and K+ currents (Figure 6g–j; Peak

Na+ current: mutant, x 1,582± s.e.m. 212 pA, n = 78; gene-edited,

4,938±448pA, n = 64; Peak K+ currents: mutant, 1,407±150 pA,

n = 78; gene-edited, 3,387±299 pA, n = 64; p< .0001, Mann Whitney

test, unpaired). Together these findings demonstrate that mutant

astrocytes, upon co-culture, directly mediate perturbations in the

physiological properties of control and mutant C9orf72MNs.

3.6 | Multiple gene pathways are perturbed in
C9orf72 astrocytes

In order to probe the cellular processes disrupted in C9orf72 astro-

cytes we next undertook RNA sequencing on astrocytes derived from

two independent C9orf72 mutant iPSCs (C9-2 & C9-3) and their

corresponding isogenic controls (C9-Δ2 & C9-Δ3). Heat maps and

hierarchical clustering of the transcriptomic data obtained from astro-

cytes demonstrated greater differences between the two mutant lines

than between mutant line and its corresponding isogenic corrected

F IGURE 5 Loss of fast, inactivating Na+ currents and persistent K+ currents in control iPSC-derived MNs co-cultured with ALS patient iPSC-
derived astrocytes. (a) Raw data showing fast, inactivating Na+ currents in control iPSC-derived MNs co-cultured with astrocytes derived from
various iPSC lines at weeks 3–4 and weeks 7–10 post plating. (b) Peak fast, inactivating Na+ currents plotted from weeks 3–10 for MNs co-
cultured with control (n = 93), C9 (n = 266) and C9-Δ (n = 156) iPSC-derived astrocytes (Weeks 3–4: Control, n = 49; C9, n = 153; C9-Δ, n = 74;
Weeks 5–6: C9, n = 53; C9-Δ, n = 49; Weeks 7–10: Control, n = 44; C9, n = 60; C9-Δ n = 33; ****, p < .0001, significantly different to MNs on

control astrocytes; ††††, p < .0001, significantly different to MNs on the gene-edited C9-Δ astrocytes; one-way ANOVA after log transformation
with Tukey's post-hoc test). (c) Raw data showing persistent K+ currents in control iPSC-derived MNs co-cultured with astrocytes derived from
various iPSC lines at weeks 3–4 and weeks 7–10 post plating. (d) Peak persistent K+ currents plotted from weeks 3–10 for MNs co-cultured with
control (n = 93), C9 (n = 266) and C9-Δ (n = 156) iPSC-derived astrocytes (Weeks 3–4: Control, n = 49; C9, n = 153; C9-Δ, n = 74; Weeks 5–6:
C9, n = 53; C9-Δ, n = 49; Weeks 7–10: Control, n = 44; C9, n = 60; C9-Δ n = 33; ****, p < .0001, significantly different to MNs on control
astrocytes; ††††, p < .0001, significantly different to MNs on the gene-edited C9-Δ astrocytes; one-way ANOVA after log transformation with
Tukey's post-hoc test) [Color figure can be viewed at wileyonlinelibrary.com]
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lines owing to heterogeneity across different iPSC lines. Therefore, to

overcome this transcriptional heterogeneity we performed compari-

sons between each mutant and its corresponding isogenic control

(Figure 7a). Differentially expressed genes were filtered using the fol-

lowing criteria: (a) genes must have significant differential expression

in the 2 independent mutant lines when compared to respective inde-

pendent isogenic controls (false discovery rate < 0.1 for each isogenic

pair), (b) genes must be dysregulated in the same direction across both

lines, (c) genes were also filtered to only retain those with mean frag-

ments per kilobase per million (FPKM) > 1 (measured across all sam-

ples, which approximates to 0.5–1 mRNA per cell). Using this

approach 698 dysregulated genes were identified (Figure 7b,c &

Figures S8 and S9). Gene ontology analysis revealed that genes

including those involved in ionotropic glutamate receptor signaling

(GRIA1, GRIA4), complement activation, ribosomal subunit assembly

(large and small) and nuclear RNA export were significantly

upregulated in mutant C9orf72 astrocytes. Downregulated genes in

mutant C9orf72 astrocytes included genes involved in cell adhesion

(L1CAM, TSP1, NTN1), synapse assembly (BDNF, NRG1, THBS2),

cell-to-cell signaling (GPC6), regulation of sodium ion transport

(SLC8A1, ATP1B2, NKAIN4) and potassium ion import (DLG1,

ATP1B2). These novel transcriptomic data reveal changes in multiple

pathways that may contribute to the deleterious effects of C9orf72

astrocytes on MN function.

F IGURE 6 MN-enriched cultures alone fail to recapitulate the pathophysiology observed when MNs are co-cultured with mutant astrocytes.
(a) Percentage of cells exhibiting each firing category in MN-enriched cultures derived from mutant and gene-edited patient iPSC lines across
weeks 7–12 post plating (C9, n = 115; C-1, n = 49; C-3, n = 66, C9-Δ, n = 92; C-Δ1, n = 19; C-Δ3, n = 73, fisher's exact test). (b) Raw data
showing fast, inactivating Na+ currents in mutant and gene-edited iPSC-derived MNs in MN-enriched cultures at weeks 7–12. (c) Peak fast,
inactivating Na+ currents plotted at weeks 7–12 post-plating for mutant and gene-edited iPSC-derived MNs in MN-enriched cultures (C9,
n = 110; C-1, n = 48; C-3, n = 62, C9-Δ, n = 82; C-Δ1, n = 17; C-Δ3, n = 65; two tailed, equal variance, non-paired, student t-test). (d) Raw data
showing persistent K+ currents in mutant and gene-edited iPSC-derived MNs in MN-enriched cultures at weeks 7–12. (e) Peak persistent K+

currents plotted at weeks 7–12 post-plating for mutant and gene-edited iPSC-derived MNs in MN-enriched cultures (C9, n = 110; C-1, n = 48; C-
3, n = 62, C9-Δ, n = 82; C-Δ1, n = 17; C-Δ3, n = 65; two tailed, equal variance, non-paired, student t-test). (f) Percentage of cells exhibiting each
firing category in mutant and gene- edited MNs co-cultured with astrocytes derived from mutant and gene-edited patient iPSC lines respectively,
across weeks 7–12 weeks post plating (C9, n = 84; C-2, n = 34; C-3, n = 50, C9-Δ, n = 65; C-Δ2, n = 29; C-Δ3, n = 36; ††††, p < .0001, significantly
different to gene-edited MNs on gene-edited C9-Δ astrocytes; fisher's exact test). (g) Raw data showing fast, inactivating Na+ currents in mutant
and gene-edited iPSC-derived MNs from MN-enriched cultures co-cultured with mutant and gene-edited astrocytes respectively at weeks 7–12.
(h) Peak fast, inactivating Na+ currents plotted at weeks 7–12 post-plating for MN-enriched mutant and gene-edited cultures co-cultured with
mutant and gene-edited astrocytes respectively (C9, n = 78; C-2, n = 31; C-3, n = 47, C9-Δ, n = 64; C-Δ2, n = 27; C-Δ3, n = 37; ††††, p < .0001,
significantly different to gene-edited MNs on gene-edited C9-Δ astrocytes; student t test, two tailed, non-paired, unequal variance). (i) Raw data
showing persistent K+ currents in mutant and gene-edited iPSC-derived MNs from MN-enriched cultures co-cultured with mutant and gene-
edited astrocytes respectively at weeks 7–12. (j) Peak persistent K+ currents plotted at weeks 7–12 post-plating for MN-enriched mutant and
gene-edited MN cultures co-cultured with mutant and gene-edited astrocytes respectively (C9, n = 78; C-2, n = 31; C-3, n = 47, C9-Δ, n = 64; C-
Δ2, n = 27; C-Δ3, n = 37; ††††, p < .0001, significantly different to gene-edited MNs on gene-edited C9-Δ astrocytes; student t test, two tailed,
non-paired, unequal variance) [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Here, we show that expression of the C9orf72 mutation in astrocytes

recapitulates key aspects of C9orf72-related ALS pathology and

directly results in physiological dysfunction of control and C9orf72

MNs upon co-culture, thus highlighting both cell-autonomous astro-

cyte pathology and non-cell autonomous MN pathophysiology.

C9orf72 mutant iPSC derived astrocytes displayed key pathologi-

cal features of RNA foci and poly-GP DPR. The loss of foci and DPR

in gene-edited astrocytes directly links the G4C2 repeat expansion

F IGURE 7 RNA Seq analysis of
C9ORF72 astrocytes. (a) Heat map
and dendrogram depicting
hierarchical clustering of RNA
sequencing reads from control (Con-
1), C9 mutant (C9-2, C9-3), and
respective isogenic control (C9-Δ2,
C9-Δ3) astrocytes. (b) Scatter plot
showing comparison of

transcriptome reads between
2 different C9 mutants and isogenic
controls. Red crosses denote
significantly upregulated genes and
blue crosses denote significantly
downregulated genes (p < 0.05,
analysis performed using DESeq 2).
(c) Venn diagram indicating total
no. of genes differentially expressed
between each C9ORF72 mutant
and isogenic control astrocyte out
of which 698 genes were found to
be common between both C9 and
isogenic pair. (d, e) Go ontology
studies predicted pathways
including significantly
downregulated (d) and upregulated
(e) genes in C9orf72 astrocytes
[Color figure can be viewed at
wileyonlinelibrary.com]
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with formation of RNA foci and poly-GP DPR in human astrocytes. It

remains to be determined whether other DPRs, in addition to poly-

GP, are also produced in patient iPSC-derived astrocytes. In line with

previous in vivo findings we observed relatively low levels of C9orf72

transcripts and protein in astrocytes (Jiang et al., 2016). Although TDP-

43 proteinopathies are the pathological hallmark of ALS regardless of

patients' genotypes, with TDP-43 deposition observed in astrocytes in

post-mortem tissues (Yamanaka & Komine, 2018) no post-mortem stud-

ies have yet reported TDP-43 proteinopathies in astrocytes in C9orf72-

related ALS. Our previous study has shown that iPSC-derived astrocytes

carrying a TARDBP mutation do not display TDP-43 aggregates or loss

of nuclear TDP-43 despite increased cytoplasmic TDP-43 expression

(Serio et al., 2013), nor do we detect TDP-43 proteinopathies in astro-

cytes harboring a C9orf72 mutation in the present study, suggesting that

iPSC-derived astrocytes may not manifest all TDP-43 proteinopathies

in vitro. Additionally, in the AAV-G4C2-66 mice, only 7–8% of cells in

cortex and hippocampus display phosphorylated TDP-43 inclusions

(Chew et al., 2015), and no TDP-43 aggregations were observed in BAC-

C9 (100–1,000) mice (O'Rourke et al., 2015).

Although there is consistent evidence of non-cell autonomous

toxicity mediated by astrocytes harboring SOD1 mutations (Ilieva

et al., 2009; Marchetto et al., 2008; Nagai et al., 2007; Papadeas et al.,

2011; Tripathi et al., 2017; Tyzack et al., 2017), data are either lacking

or conflicting for other ALS-related mutations (Haidet-Phillips et al.,

2013; Serio et al., 2013; Tong et al., 2013). For example, human iPSC-

derived astrocytes from a patient harboring an TARDBP M337V muta-

tion did not affect the survival of control iPSC-derived MNs (Serio

et al., 2013). This finding was supported by an independent study

where astrocytes lacking TDP-43 or overexpressing mutant TARDBP

failed to cause the death of control MNs in co-culture or when

implanted into wild-type rat spinal cords (Haidet-Phillips et al., 2013).

Conversely, wild-type MNs in transgenic rats, where the TARDBP

M337V mutation was restricted to astrocytes, progressively degener-

ate (Tong et al., 2013). Furthermore, cell culture experiments have

shown that control MNs degenerate when exposed to astrocyte-

conditioned medium (ACM) collected from cultures of mouse astro-

cytes harboring mutant TDP-43 (Rojas et al., 2014) or sporadic ALS

patient astrocytes (Haidet-Phillips et al., 2011).

Our finding, that C9orf72 mutant astrocytes cause progressive

dysfunction of control MNs, strongly support non-cell autonomous

disease mechanisms in C9orf72-mediated ALS. Although we did not

find an effect of C9orf72 mutant astrocytes on MN survival, Meyer

et al. previously reported that, upon co-culture, mutant human

C9orf72 astrocytes led to the loss of control mouse MNs (Meyer

et al., 2014). However, important differences between the studies

limit direct comparison. These include the method of generation and

regional identity of astrocytes. Meyer et al. derived astrocytes

through direct conversion of adult skin fibroblasts into neural precur-

sors, which were subsequently differentiated into astrocytes in

serum-containing media without patterning. In the current study,

fibroblasts were first reprogrammed into iPSCs before generating spi-

nal astrocytes in chemically defined media. These differences in gen-

eration methods can lead to distinct epigenetic and transcriptional

patterns with functional consequences (Chandrasekaran, Avci, Leist,

Kobolak, & Dinnyes, 2016). Critically, Meyer et al. also studied mouse

ESC-derived MNs in contrast to an entirely humanized co-culture

model as reported in this study. This is an important consideration,

given that astrocytes derived from human versus rodent iPSCs exhibit

different transcriptomic profiles and subtle functional differences

(Y. Zhang et al., 2016). Notwithstanding experimental differences, both

the present study and that of Meyer and colleagues demonstrate

adverse effects of C9orf72 mutant astrocytes on MNs, strongly

supporting involvement of non-cell autonomous disease mechanisms in

C9orf72-mediated ALS. Furthermore, our findings highlight the impor-

tance of investigating function as well as cell survival when determining

whether non-cell autonomous processes contribute to pathology.

Recent studies of human iPSC-derived MNs from our group and

others have demonstrated physiological changes in MNs harboring

ALS-related mutations (Devlin et al., 2015; Guo et al., 2017; Naujock

et al., 2016; Sareen et al., 2013; Wainger et al., 2014; Z. Zhang et al.,

2013). The most commonly reported physiological change in ALS-

affected MNs is a reduction in output, or hypoexcitability similar to

that revealed in the present study (Devlin et al., 2015; Guo et al.,

2017; Naujock et al., 2016; Sareen et al., 2013; Z. Zhang et al., 2013).

Such perturbations in the function of iPSC-derived MNs were previ-

ously assumed to reflect cell autonomous disease mechanisms in cul-

tures consisting of approximately 80% neurons, 50% of which were

MNs (Devlin et al., 2015). However, in the present study we found

that patient iPSC-derived astrocytes caused a reduction in the func-

tional output of control and patient iPSC-derived MNs, supporting

non-cell autonomous mechanisms. Our findings therefore implicate

“contaminant” astrocytes present in previous studies of enriched

motor neuron mixed cultures as key mediators of MN dysfunction.

Interestingly, a previous rodent-based study has also shown non-cell

autonomous effects of astrocytes on the electrophysiological proper-

ties of control MNs (Fritz et al., 2013). Fritz and colleagues showed

that astrocyte conditioned medium, taken from primary cultures of

mutant SOD1 expressing mouse astrocytes, induced changes in the

output of wild-type mouse MNs, thus implicating toxic factors

released by astrocytes as mediators of altered MN function

(Yamanaka & Komine, 2018). Factors released by astrocytes which

may alter MN function include the effectors of necroptosis: receptor-

integrating serine/threonine-protein kinase 1 (RIP1) and mixed lineage

kinase domain-like (MLKL) (Re et al., 2014), proinflammatory cyto-

kines and inflammatory mediators (Aebischer et al., 2011; Kia et al.,

2018; Phatnani et al., 2013; Tripathi et al., 2017) as well as reactive

oxygen species (ROS) (Marchetto et al., 2008; Rao & Weiss, 2004).

The toxic effects of the astrocyte secretome have also been dem-

onstrated in the field of C9orf72-mediated ALS, although this area

remains grossly unexplored. Madill and colleagues showed that

C9-ALS patient iPSC-derived astrocytes modulate the autophagy

pathway in a non-cell autonomous manner (Madill et al., 2017). Cells

treated with patient conditioned medium demonstrated decreased

expression of LC3-II, a key adapter autophagy protein, with a concom-

itant accumulation of p62 and increased SOD1 expression. Addition-

ally, micro-RNAs secreted through astrocyte-derived extracellular
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vesicles cause increased neuronal death and deficits in neurite out-

growth in control mouse MNs (Varcianna et al., 2019). Through path-

way analysis, they identified that hsa-miR-494-3p regulates axonal

maintenance, with its primary target being Semaphorin 3A (SEM3A).

Treatment of the MNs with a miR-494-3p mimic in the presence of

C9 iAstrocyte conditioned medium significantly reduced the levels of

SEM3A by 25% in the MNs, and increased branching and neurite

length, and survival.

An additional hypothesis to explain the toxic effect of ALS astro-

cytes on MN function is the loss or reduction of normal supportive roles

fulfilled by astrocytes, including homeostatic regulation of extracellular

glutamate (Foran & Trotti, 2009; Sasabe et al., 2012). This hypothesis is

supported by a recent study that showed a reduction in the ability of

VCPmutant astrocytes to support MN survival (Hall et al., 2017).

RNA-Seq analysis carried out on C9orf72 astrocytes in this study

further highlighted alterations in multiple new gene pathways which

may be causative towards both cell autonomous and non-cell autono-

mous pathophysiology. We observed upregulation of many genes

involved in ribosome biogenesis and assembly. This is of interest in

view of recent interactome studies and yeast genetic modifier screens

that show toxic di-peptide repeat proteins play a role in ribosomal

processing/biogenesis and reduce overall cell translation (Chai &

Gitler, 2018; Hartmann et al., 2018). These studies thus provide indi-

rect support for astrocyte DPRs having a role in the observed dys-

regulation of ribosomal processing genes. Na+/K+ ATPase is a

membrane bound pump that exchanges Na+ and K+ across the plasma

membrane to maintain ionic concentration gradients, whilst also mod-

ulating neuronal excitability in an activity dependent manner (Picton,

Nascimento, Broadhead, Sillar, & Miles, 2017). In our transcriptome

analysis we observed upregulation of glial specific Na+/K+ ATPase

(ATP1B2). ATP1B2 knock-out mice exhibit deficits in motor co-

ordination and develop tremors leading to premature death due to

osmotic imbalance (Magyar et al., 1994). Furthermore, ATP1A2 is found

to be upregulated in astrocytes expressing mutant SOD1 and contrib-

utes to non-cell autonomous toxicity to motor neurons (Gallardo et al.,

2014). Furthermore, astrocytic focal adhesion molecules have been

implicated in modulating neuronal excitability in seizure paradigms (Cho,

Muthukumar, Stork, Coutinho-Budd, & Freeman, 2018) and dys-

regulation of cell-adhesion by L1CAM deficiency leads to impairment of

action potential initiation (Valente et al., 2016). Taken together, the

transcriptomic data are consistent with the possibility that impairments

in astrocytic cellular processes could lead to a Na+/K+ ionic imbalance in

the synaptic cleft, leading to pathological changes in neuronal excitability.

Given the complex and dynamic interplay between astrocytes and MNs,

it is likely that mechanisms underlying non-cell autonomous dysfunction

and neurodegeneration are varied and reflect an imbalance between loss

of homeostatic function and gain of toxic effects. It will therefore be

important in future studies to comprehensively evaluate these newly dis-

covered gene pathways and determine the consequences of perturba-

tions in the transcriptome and proteome of astrocytes expressing the

human C9orf72 mutation in order to fully define the mechanism(s) that

underlie the observed pathological consequences of human C9orf72

astrocytes on human MN function.

In summary, our study provides the first report of the direct molecu-

lar and cellular impact of the C9orf72 mutation on human astrocytes and

their interaction with human MNs. Findings here demonstrate that astro-

cytes, in addition to MNs, are affected by expression of mutant C9orf72,

which leads to the development of pathological changes. In addition,

expression of mutant C9orf72 in astrocytes induces progressive dysfunc-

tion of MNs due to the loss of voltage-activated currents. These data

suggest that non-cell autonomous disease mechanisms are a contributor

to C9orf72-mediated ALS. Furthermore, our study demonstrates the

value of combining gene-editing with sensitive physiological studies in

human iPSC-based neurodegenerative disease modeling.
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