Accelerated Article Preview

Structure of M^{pro} from COVID-19 virus and discovery of its inhibitors

Received: 9 February 2020

Accepted: 1 April 2020

Accelerated Article Preview Published online 9 April 2020

Cite this article as: Jin, Z. et al. Structure of M^{pro} from COVID-19 virus and discovery of its inhibitors. *Nature* https://doi.org/10.1038/ s41586-020-2223-y (2019).

Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, Yinkai Duan, Jing Yu, Lin Wang, Kailin Yang, Fengjiang Liu, Rendi Jiang, Xinglou Yang, Tian You, Xiaoce Liu, Xiuna Yang, Fang Bai, Hong Liu, Xiang Liu, Luke W. Guddat, Wenqing Xu, Gengfu Xiao, Chengfeng Qin, Zhengli Shi, Hualiang Jiang, Zihe Rao & Haitao Yang

This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

Structure of M^{pro} from COVID-19 virus and discovery of its inhibitors

https://doi.org/10.1038/s41586-020-2223-y

Received: 9 February 2020

Accepted: 1 April 2020

Published online: 9 April 2020

Zhenming Jin^{1,2,10}, Xiaoyu Du^{2,10}, Yechun Xu^{3,10}, Yongqiang Deng^{4,10}, Meiqin Liu^{5,10}, Yao Zhao¹, Bing Zhang¹, Xiaofeng Li⁴, Leike Zhang⁵, Chao Peng⁶, Yinkai Duan¹, Jing Yu¹, Lin Wang¹, Kailin Yang⁷, Fengjiang Liu¹, Rendi Jiang⁵, Xinglou Yang⁵, Tian You¹, Xiaoce Liu¹, Xiuna Yang¹, Fang Bai¹, Hong Liu³, Xiang Liu⁸, Luke W. Guddat⁹, Wenqing Xu^{1,6}, Gengfu Xiao⁵, Chengfeng Qin⁴, Zhengli Shi⁵, Hualiang Jiang^{1,3}, Zihe Rao^{1,2,8} & Haitao Yang¹

A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan¹⁻⁴. Currently there are no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (M^{pro}). M^{pro} is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus^{5,6}. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these compounds inhibited M^{pro} with IC₅₀ values ranging from 0.67 to 21.4 μ M. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.

CoVs infect humans and other animal species, causing a variety of highly prevalent and severe diseases, including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS)⁷. The COVID-19 virus genome is comprised of ~30,000 nucleotides; its replicase gene encodes two overlapping polyproteins, pp1a and pp1ab, required for viral replication and transcription^{3,4}. The functional polypeptides are released from the polyproteins by extensive proteolytic processing, predominantly by a 33.8-kDa main protease (M^{pro}), also referred to as the 3C-like protease. M^{pro} digests the polyprotein at no less than 11 conserved sites, starting with the autolytic cleavage of this enzyme itself from pp1a and pp1ab⁸. The functional importance of M^{pro} in the viral life cycle, together with the absence of closely related homologues in humans, identify the M^{pro} as an attractive target for antiviral drug design⁹.

To facilitate the rapid discovery of antiviral compounds with clinical potential, we developed a strategy combining structure-assisted

drug design, virtual drug screening and high-throughput screening to repurpose existing drugs to target COVID-19 virus M^{pro} .

Establishing a high-throughput activity assay

Recombinant COVID-19 virus M^{pro} with native N and C termini was expressed in *Escherichia coli* and subsequently purified (Extended Data Fig. 1a, b). The molecular weight of COVID-19 virus M^{pro} as determined by mass spectroscopy is 33797.0 Da, consistent with its theoretical molecular weight 33796.8 Da. In order to characterize its enzymatic activity and to carry out high-throughput screening of inhibitors, we developed a fluorescence resonance energy transfer (FRET) assay. To do this, a fluorescently labeled substrate, MCA-AVLQ+SGFR-Lys(Dn p)-Lys-NH₂, derived from the N-terminal auto-cleavage sequence of the viral protease was designed and synthesized for time-dependent kinetic analysis (Extended Data Fig. 1e). The catalytic efficiency (k_{cart}/K_m)

¹Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China. ²Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China. ³Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. ⁴Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China. ⁶ScAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China. ⁶National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China. ⁷Taussig Cancer Center, Cleveland Clinic, Cleveland, USA. ⁸State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China. ⁹School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia. ¹⁰These authors contributed equally: Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu. ⁵⁶-e-mail: hljiang@simm.ac.cn; raozh@mail.tsinghua.edu.cn; yanght@shanghaitech.edu.cn

for COVID-19 virus M^{pro} was measured to be 28,500 M⁻¹s⁻¹ which is slightly higher than that for SARS-CoV M^{pro} (k_{cat}/K_m =26,500 M⁻¹s⁻¹)¹⁰, but over 30-fold higher than that of human rhinovirus 3C protease (k_{cat}/K_m =920 M⁻¹s⁻¹)¹¹.

N3 is a potent irreversible inhibitor of COVID-19 virus $M^{\mbox{\scriptsize pro}}$

In a previous study, we designed a Michael acceptor inhibitor N3 using computer-aided drug design (CADD) (Extended Data Fig. 1c), which can specifically inhibit multiple CoV M^{pro}s, including those from SARS-CoV and MERS-CoV $^{\rm 12-15}$. It also has displayed potent antiviral activity against infectious bronchitis virus in an animal model¹³. The CC₅₀ of N3 is >133 uM (Extended Data Fig. 1f). Next, we constructed a homology model for COVID-19 virus Mpro and used molecular docking to see if N3 could target this new CoV M^{pro}. A docking pose showed that it could fit inside the substrate-binding pocket. To assess the efficacy of N3 for COVID-19 virus M^{pro}, kinetic analysis was performed. A progress curve showed that it is a time-dependent irreversible inhibitor of this enzyme. Further, the shape of this curve supports the mechanism of two-step irreversible inactivation. The inhibitor first associates with COVID-19 virus Mpro (EI) with a dissociation constant K_i ; then, a stable covalent bond is formed between N3 and Mpro (E-I). The evaluation of this time-dependent inhibition requires both the equilibrium-binding constant K_i (designated as k_2/k_1) and the inactivation rate constant for covalent bond formation k_3 . However, N3 exhibits very potent inhibition of COVID-19 virus M^{pro}, such that measurement of K_i and k_3 proved not feasible (Extended Data Fig. 1d, e). When very rapid inactivation occurs, $k_{obs}/[I]$ was utilized to evaluate the inhibition as an approximation of the pseudo second-order rate constant $(k_3/K_i)^{12}$. The value of $k_{obs}/[1]$ of N3 for COVID-19 virus M^{pro} was determined to be 11,300±880 M⁻¹s⁻¹, suggesting this Michael acceptor has potent inhibition.

The crystal structure of COVID-19 virus M^{pro} in complex with N3

In order to elucidate the inhibitory mechanism of this compound, we determined the crystal structure of COVID-19 virus M^{pro} in complex with N3 to 2.1-Å resolution. The asymmetric unit contains only one polypeptide (Extended Data Table 1). However, two of these associate to form a dimer by a crystallographic 2-fold symmetry axis (the two molecules are designated protomer A and B) (Fig. 1b). All residues (residues 1-306) are visible in electron density maps. Each protomer is composed of three domains (Fig. 1a). Domains I (residues 8-101) and II (residues 102–184) have an antiparallel β-barrel structure. Domain III (residues 201–303) contains five α -helices arranged into a largely antiparallel globular cluster, and is connected to domain II by means of a long loop region (residues 185-200). COVID-19 virus Mpro has a Cys-His catalytic dyad, and the substrate-binding site is located in a cleft between Domain I and II. These features are similar to those of other M^{pro}s reported previously^{5,6,13–15}. The electron density map shows that N3 binds in the substrate-binding pocket in an extended conformation (Fig. 1c, Extended Data Fig. 2), with the inhibitor backbone atoms forming an antiparallel sheet with residues 164-168 of the long strand₁₅₅₋₁₆₈ on one side, and with residues 189-191 of the loop linking domains II and III.

Here we detail the specific interactions of N3 with M^{pro} (Fig. 1c, d). The electron density shows that the Sy atom of C145-A forms a covalent bond (1.8-Å) with the C β of the vinyl group, confirming that the Michael addition has occurred. The S1 subsite has an absolute requirement for Gln at the P1 position. The side chains of F140-A, N142-A, E166-A, H163-A, H172-A, S1-B (from protomer B), and main chains of F140-A and L141-A are involved in S1 subsite formation, which also includes two ordered water molecules (named W1 and W2). The lactam at P1 inserts into the S1 subsite and forms a hydrogen bond with H163-A. The side chain of Leu at P2 site inserts deeply into the hydrophobic S2 subsite, which consists of the side chains of H41-A, M49-A, Y54-A, M165-A, and the alkyl portion of the side chain of D187-A. The side chain of Val at P3 is solvent-exposed, indicating that this site can tolerate a wide range of functional groups. The side chain of Ala at P4 side is surrounded by the side chains of M165-A, L167-A, F185-A, Q192-A and the main chain of Q189-A, all of which form a small hydrophobic pocket. P5 makes van der Waals contacts with P168-A and the backbone of residues 190–191. The bulky benzyl group extends into the S1' site, forming van der Waals interactions with T24-A and T25-A. In addition, N3 forms multiple hydrogen bonds with the main chain of the residues in the substrate-binding pocket, which also helps lock the inhibitor inside the substrate-binding pocket.

An overlay of the structures of COVID-19 virus Mpro-N3 and SARS-CoV M^{pro}-N1¹² shows that N3 and N1 bind to M^{pro}s in a similar mode (Fig. 2a, Extended Data Fig. 3). The major difference lies in the P1' site. Compared with the benzyl ester portion of N3 in the COVID-19 virus Mpro structure, the ethyl ester portion in N1 adopts a slightly different conformation. This may be attributed to an ordered water (W1) in SARS-CoV M^{pro}-N1 structure, which makes a long-distance hydrogen bond to the carboxylate oxygen of the ester and also forms two hydrogen bonds from the backbone NH of G143 and the side chain of N142. In our previous study, we proposed that all the CoV Mpros share a highly conserved substrate-recognition pocket, which could serve as a drug target for the design of broad-spectrum inhibitors¹². The recent discovery of new CoVs and accumulation of structural data for CoV Mpros from various species provided the opportunity to further examine this hypothesis. Superposition of the 12 crystal structures of M^{pro}s¹²⁻²¹ have shown that the most variable regions were the helical domain III and surface loops, but the substrate-binding pockets located in a cleft between domains I and II are still highly conserved among all CoV Mpros, suggesting the antiviral inhibitors targeting this site should have wide-spectrum anti-CoV activity (Fig. 2b, c).

Virtual screening

The structure of COVID-19 virus M^{pro} in complex with N3 provides a model for identifying lead inhibitors to target COVID-19 virus M^{pro} through *in silico* screening. To achieve this, an in-house database of potential binding compounds was docked using Glide (v8.2). The results show that cinanserin fits snugly into the substrate-binding pocket, by interacting with H41 and E166 of M^{pro} by cation- π . Subsequently we determined this compound has an IC₅₀ value of 125 μ M for M^{pro}. Moreover, cinanserin is a well-characterized serotonin antagonist, which underwent preliminary clinical testing in humans in the 1960s²² and has previously been shown to inhibit SARS-CoV M^{pro 23}. The CC₅₀ of cinanserin is > 200 μ M (Extended Data Fig. 4). Thus, it has potential for optimization as an anti-viral drug lead.

High-throughput screening

Next, we used our FRET assay, to screen a library of ~10,000 compounds consisting of approved drugs, clinical trial drug candidates and natural products. Primary hits included seven compounds that are either FDA-approved drugs or clinical trial/preclinical drug candidates. We then determined their IC₅₀ values, which are in the range from 0.67 to 21.4 μ M (Fig. 3). Amongst them, disulfiram and carmofur are FDA-approved drugs, whilst ebselen, shikonin, tideglusib, PX-12 and TDZD-8 are currently in clinical trials or preclinical studies. Ebselen has the strongest inhibition of M^{pro} activity with an IC₅₀ of 0.67 μ M. However, in a detergent-based assay²⁴, TDZD-8 was found to be an aggregate-based inhibitor, which might non-specifically inhibit M^{pro} (Extended Data Fig. 5) and was therefore not considered for further investigation. Next, we set out to identify the potential covalent inhibitors among these compounds through tandem MS/MS analysis.

The MS/MS data shows that ebselen, PX-12 and carmofur are all able to covalently bind to C145 of the catalytic dyad in COVID-19 virus M^{pro}. However, while PX-12 and carmofur completely modified M^{pro}, ebselen could only partially modify this viral cysteine protease (Extended Data Fig. 6). Since ebselen has even stronger inhibition than the others, there is a possibility that ebselen could also inhibit M^{pro} through non-covalent binding. It is likely that a portion of the hits identified by screening are covalently bonded to the catalytic cysteine of M^{pro} through their sulfhydryl groups. In general, such molecules are expected to be promiscuous binders and therefore, as they stand, may have limited potential as drug leads. Since our structural data is based on N3, we investigated if molecular docking could predict how disulfiram, tideglusib and shikonin bind to this protein. In all cases, reasonable docking poses were found, demonstrating that they could fit inside the substrate-binding pocket (Extended Data Fig. 7).

Antiviral activity assay

To further substantiate the enzymatic inhibition results in vitro, we evaluated whether these compounds could prevent viral replication in cell-based assays. As shown in Fig. 4a, quantitative real-time RT-PCR (qRT-PCR) demonstrated that ebselen and N3 showed the strongest antiviral effects among them at a concentration of 10 µM treatment in COVID-19 virus infected Vero cells. A plaque-reduction assay (Extended Data Fig. 8) was performed to further assess the efficacy of these two compounds in protecting cells. Ebselen and N3 displayed inhibition against COVID-19 virus with individual EC50 values of 4.67 µM and 16.77 µM, respectively (Fig. 4b, c). The dose-response curves suggest that both of them could be able to penetrate cellular membrane to access their targets. Ebselen is an organoselenium compound with anti-inflammatory, anti-oxidant and cytoprotective properties. This compound has been investigated for the treatment of multiple diseases, such as bipolar disorders²⁵ and hearing loss^{26,27}. Ebselen has extremely low cytotoxicity (LD₅₀ in rats >4,600 mg/kg, per os)²⁸ and its safety in humans has been evaluated in a number of clinical trials^{26,27,29}. These data strongly suggest the clinical potential of ebselen for CoV treatment. It is also interesting that cinanserin displayed moderate inhibition against COVID-19 virus with an EC₅₀ value of 20.61 μ M from qRT-PCR analysis (Extended Data Fig. 4), which is superior to that in the enzymatic inhibition assay, suggesting that cinanserin might have multi-drug targets in preventing viral infection. In further studies, selection and characterization of drug-resistant mutants will help clarify the mode of cinanserin's action.

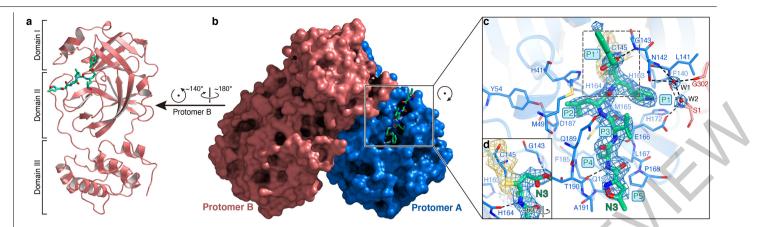
Discussion

Our crystal structural and docking data have shown that the drug leads identified can bind to the substrate-binding pocket of COVID-19 virus M^{pro} , which is highly conserved among all CoV M^{pro} s. This strongly supports our hypothesis that development of a single antiviral agent targeting M^{pro} or in combination with other potential therapies could provide an effective first line of defense against all CoV-associated diseases.

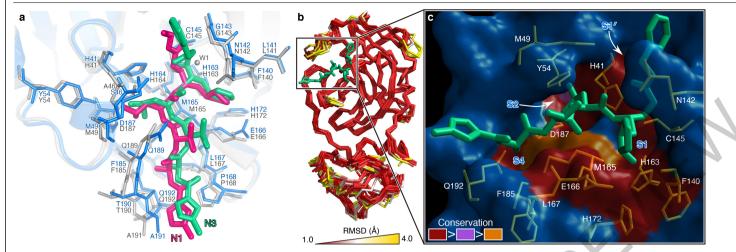
In the last twenty years, new infectious agents have emerged to cause epidemics, such as SARS and MERS⁷. The timely development of effective antiviral agents for clinical use is extremely challenging because conventional drug development approaches normally take years of investigations and cost billions of dollars. The repurposing of approved pharmaceutical drugs and drug candidates provides an alternative approach to rapidly identify potential drug leads to manage rapidly emerging viral infections. Cell-based phenotypic screening has proven to be valuable³⁰, but the complexity of this approach is not readily compatible with high-throughput pipelines, and it cannot identify the molecular target or mechanism of action³¹. In this study, the convergence of structure-based *ab initio* drug design, virtual screening and high-throughput screening proved to be an efficient strategy to find antiviral leads against COVID-19 virus. The methods presented here can greatly assist in the rapid discovery of drug leads with clinical potential in response to new emerging infectious diseases that currently lack specific drugs and vaccines.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-020-2223-y.


- 1. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine (2020).
- 2. Qun Li et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England Journal of Medicine (2020).
- Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, https://doi.org/10.1038/s41586-020-2012-7 (2020).
- 4. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. *Nature*, https://doi.org/10.1038/s41586-020-2008-3 (2020).
- Anand, K. et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. The EMBO Journal 21, 3213-3224 (2002).
- Yang, H. T. et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America 100, 13190-13195, https://doi.org/10.1073/ pnas.1835675100 (2003).
- de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. *Nature Reviews Microbiology* 14, 523-534, https://doi.org/10.1038/nrmicro.2016.81 (2016).
- Hegyi, A. & Ziebuhr, J. Conservation of substrate specificities among coronavirus main proteases. Journal of general virology 83, 595-599 (2002).
- Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y. & Jung, S. H. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. *Journal of Medicinal Chemistry* 59, 6595-6628, https://doi.org/10.1021/acs.jmedchem.5b01461 (2016).
- Xue, X, Y. et al. Production of authentic SARS-CoV M-pro with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. *Journal of Molecular Biology* **366**, 965-975, https://doi.org/10.1016/j.jmb.2006.11.073 (2007).
- Wang, Q. M., Johnson, R. B., Cox, G. A., Villarreal, E. C. & Loncharich, R. J. A Continuous Colorimetric Assay for Rhinovirus-14 3C Protease Using Peptidep-Nitroanilides as Substrates. *Analytical biochemistry* 252, 238-245 (1997).
- Yang, H. T. et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. Plos Biology 3, 2044-2044, https://doi.org/10.1371/journal.pbio.0030428 (2005).
- Xue, X. Y. et al. Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. *Journal of Virology* 82, 2515-2527, https://doi. org/10.1128/jvi.02114-07 (2008).
- Ren, Z. L. et al. The newly emerged SARS-Like coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a 3C-like protease. Protein & Cell 4, 248-250, https://doi.org/10.1007/s13238-013-2841-3 (2013).
- Wang, F., Chen, C., Tan, W., Yang, K. & Yang, H. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci Rep 6, 22677-22677, https://doi.org/10.1038/srep22677 (2016).
- Zhao, Q. et al. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. Journal of virology 82, 8647-8655, https://doi.org/10.1128/JVI.00298-08 (2008).
- Lee, C.-C. et al. Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J Biol Chem 284, 7646-7655, https:// doi.org/10.1074/jbc.M807947200 (2009).
- Ma, Q., Xiao, Y., Hilgenfeld, R. Inhibitor for the Main Protease of Coronavirus Hku4 (2012).
- Wang, F. H. et al. Crystal Structure of Feline Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors. *Journal of Virology* **90**, 1910-1917, https://doi. org/10.1128/jvi.02685-15 (2016).
- Wang, F. H. et al. Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus. Journal of Medicinal Chemistry 60, 3212-3216, https:// doi.org/10.1021/acs.jmedchem.7b00103 (2017).
- Cui, W. et al. The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor. *Biochemical and Biophysical Research Communications* 511, 794-799, https://doi.org/10.1016/j.bbrc.2019.02.105 (2019).
- Rubin, B. & Waugh, M. H. Antiphlogistic effects of antiserotonin (SQ 10,643) and aminopyrine in rats versus endotoxin and other agents. *Proceedings of the Society for Experimental Biology and Medicine* **119**, 438-443 (1965).
- Chen, L. et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. *Journal* of virology **79**, 7095-7103 (2005).
- Feng, B. Y. & Shoichet, B. K. A detergent-based assay for the detection of promiscuous inhibitors. *Nature protocols* 1, 550-553 (2006).
- Singh, N. et al. A safe lithium mimetic for bipolar disorder. Nature communications 4, 1-7 (2013).

- Lynch, E. & Kil, J. Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Seminars in Hearing 30, 047-055 (2009).
- Kil, J. et al. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. *The Lancet* **390**, 969-979 (2017).
- Renson, M., Etschenberg, E. & Winkelmann, J. 2-Phenyl-1, 2-benzisoselenazol-3 (2H)-one containing pharmaceutical preparations and process for the treatment of rheumatic diseases. (1982).
- Masaki, C. et al. Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology 233, 2655-2661 (2016).
- Xu, M. et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. *Nature Medicine* 22, 1101-1107, https://doi.org/10.1038/nm.4184 (2016).
- Aulner, N., Danckaert, A., Ihm, J., Shum, D. & Shorte, S. L. Next-Generation Phenotypic Screening in Early Drug Discovery for Infectious Diseases. *Trends in parasitology* (2019).


Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

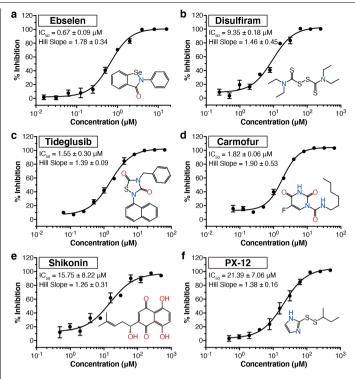

4 | Nature | www.nature.com

Fig. 1 | **The crystal structure of COVID-19 virus M**^{pro} **in complex with N3. a**, Cartoon representation of one protomer of the dimeric M^{pro}-inhibitor complex. **b**, Surface representation of the homodimer of M^{pro}. Protomer A is in blue, protomer B is in salmon, N3 is presented as green sticks. **c**, A zoomed view of the substrate-binding pocket. The key residues forming the binding pocket are shown in sticks, the two waters, assigned as W1 and W2, are shown as red spheres. P1, P1', P2, P3, P4 and P5 sites of N3 are indicated. Hydrogen bonds that help to lock the inhibitor are shown in black dashed lines. The $2F_o$ - F_c density map contoured at 1.2 σ is shown around N3 molecule (blue mesh), C145-A (yellow mesh), and the two waters (blue mesh). **d**, The C-S covalent bond.

Fig. 2 | **The substrate-binding pockets of CoV M^{pro}s across different species. a**, Comparison of inhibitor binding mode between the structures of COVID-19 virus M^{pro}-N3 and SARS-CoV M^{pro}-N1. COVID-19 virus M^{pro} is shown in marine cartoon; SARS-CoV M^{pro} in grey; N3 in green sticks; N1 in hot pink. **b**, Superposition of crystal structures of M^{pro}s (Cα1-300) from 12 CoVs, including COVID-19 virus, SARS-CoV, MERS-CoV, HCoV-HKU1, BtCoV-HKU4, MHV-A59, PEDV, FIPV, TGEV, HCoV-NL63, HCoV-229E and IBV. The color spectrum represents the root-mean-square deviation (RMSD) of the aligned C α atoms. **c**, Surface presentation of conserved substrate-binding pockets of 12 CoV M^{pro}s. Red: residues are entirely identical among all 12 M^{pro}s; violet: conserved substitution in one CoV M^{pro}; orange: conserved substitution in more than one CoV M^{pro}s. S1, S2, S4, and S1' subsites are indicated.

Fig. 3 | **Drug leads inhibit the activity of COVID-19 virus M**^{pro}. **a-f**, The hydrolytic activity of COVID-19 virus M^{pro} was measured in the presence of varying concentrations of the drug candidates. Dose-response curves for half-maximum inhibitory concentration (IC₅₀) values were determined by nonlinear regression. All data are shown as mean \pm s.e.m., n = 3 biological replicates.

Article **b** $120 \ \text{EC}_{50} = 4.67 \pm 0.80 \ \mu\text{M}$ а 2.0 (IIII) 2.0-100

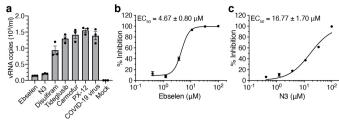


Fig. 4 | Antiviral activities of the drug leads against COVID-19 virus. a, The quantification of absolute viral RNA copies (per ml) in the supernatant at 72 h post infection (p.i.) determined by qRT-PCR analysis. Data are mean \pm s.e.m., n = 3 biological replicates. **b**, **c**, Dose-response curves for ebselen and N3 in the plaque-reduction assay, respectively; all data are shown as mean \pm s.e.m., n = 4 biological replicates.

Methods

Cloning, protein expression and purification of COVID-19 virus M^{pro}

The full-length gene encoding COVID-19 virus M^{pro} (NC 045512) was optimized and synthesized for Escherichia coli expression (Genewiz, USA). Cloning strategy for producing authentic viral M^{pro} has been reported previously¹⁰. The expression plasmid was transformed into Escherichia coli BL21 (DE3) cells and then cultured in Luria Broth medium containing 100 µg/ml ampicillin at 37 °C. When the cells were grown to OD₆₀₀ of 0.6-0.8, 0.5 mM IPTG was added to the cell culture to induce the expression at 16 °C. After 10 h, the cells were harvested by centrifugation at 3,000g. The cell pellets were resuspended in lysis buffer (20 mM Tris-HCl pH 8.0.300 mM NaCl). lysed by high-pressure homogenization, and then centrifuged at 25,000g for 40 min. The supernatant was loaded onto Ni-NTA affinity column (Qiagen, Germany), and washed by the resuspension buffer containing 20 mM imidazole. The His tagged Mpro was eluted by cleavage buffer (50 mM Tris-HCl pH 7.0, 150 mM NaCl) including 300 mM imidazole. Human rhinovirus 3C protease was added to remove the C-terminal His tag. The Mpro was further purified by ion exchange chromatography and size exclusion chromatography. CoV Mpros exist as a mixture of monomers and dimers in solutions³². The purified M^{pro} was stored in 50 mM Tris-HCl pH 7.3, 1 mM EDTA.

Crystallization, data collection and structure determination

COVID-19 virus M^{pro} was incubated with 10 mM N3 for 30 min and the complex (5 mg/ml) was crystallized by hanging drop vapor diffusion method at 20 °C. The best crystals were grown with well buffer containing 0.1 M MES pH 6.0, 2% polyethylene glycol (PEG) 6000, 3% DMSO, 1 mM DTT. The cryo-protectant solution contained 0.1 M MES pH 6.0, 30% PEG 400.

X-ray data were collected on beamline BL17U1 at Shanghai Synchrotron Radiation Facility (SSRF) at 100 K and at a wavelength of 1.07180 Å using an Eiger X16M image plate detector. Data integration and scaling were performed using the program Xia233. The structure was determined by molecular replacement (MR) with the Phaser module³⁴ in CCP4³⁵ using the SARS-CoV M^{pro} (PDB ID: 2H2Z) as a search template. The output model from MR was subsequently subjected to iterative cycles of manual model adjustment with Coot³⁶ and refinement was finished with Phenix³⁷. The inhibitor N3 was built according to the omit map. The phasing and refinement statistics are summarized in Extended Data Table 1. The R_{work}/R_{free} values are 0.202/0.235, respectively. 97.3% residues are in most favored regions of the Ramachandran plot, and no residues are found in disallowed regions. Coordinates and structure factors for COVID-19 virus M^{pro} in complex with the inhibitor N3 have been deposited in Protein Data Bank (PDB) with accession number 6LU7. While this work was under review, we solved the complex structure at a higher resolution (1.7 Å). The relevant coordinates and structure factors have been deposited in PDB with accession number 7BQY.

Enzymatic activity and inhibition assays

The enzyme activity assays have been described previously¹⁰. Briefly, the activity of COVID-19 virus M^{pro} was measured by a continuous kinetic assay, with the substrate MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2 (GL Biochem, Shanghai), using wavelengths of 320 nm and 405 nm for excitation and emission, respectively. The assay started by immediately mixing 0.2 μ M COVID-19 virus M^{pro} with different concentrations of substrate (2.5-100 μ M). Fluorescence intensity was monitored with an EnVision multimode plate reader (Perkin Elmer, USA). Initial rates were obtained by fitting the linear portion of the curves to a straight line. The kinetic parameters K_m and k_{cat} were calculated from a double-reciprocal plot. As N3 is a mechanism-based irreversible inhibitor for COVID-19 virus M^{pro}, $k_{obs}/[I]$ was used as an approximation of the pseudo second-order rate constant to evaluate the inhibition effect

of the inhibitor N3¹². In this case, the measurement was carried out with 0.2 μ M of enzyme, 20 μ M of substrate and inhibitor at 6 different concentrations (0-1 μ M).

Virtual screening

The virtual screening was performed using our in-house database via a workflow application of Glide (v8.2), Maestro (Schrödinger 2019-1a)³⁸. All compounds in the database were considered to be at pH 7.4 ± 0.2 to estimate their protonation state using the program EpiK³⁹. Their three dimensional conformations were generated by the ligPrep module of Maestro. The structure of COVID-19 virus M^{pro} (PDB ID: 6LU7) was used to generate receptor grid for docking simulations. The center of active site of the grid was determined according to the position of N3 in the structure. The flexibility of the receptor hydroxyl and thiol groups in side chains of C145, S46 and Y54 were considered. At the very beginning, a relatively fast but raw screening was performed by using the glide standard precision model, and the top 20% of compounds were kept. Finally, the candidate molecules were picked by analysing the predicted binding modes and their scores.

High-throughput drug screen and IC₅₀ measurement

Potential inhibitors against COVID-19 virus Mpro were screened by an enzymatic inhibition assay. When the different compounds were added into the enzymatic reaction mixture, the change of initial rates was calculated to evaluate their inhibitory effect. Five drug libraries, Approved Drug Library (Target Mol, USA), Clinic Compound Library (Target Mol, USA), FDA-approved Drug Library (Selleck, USA), Natural Product Library (Selleck, USA), and Anti-virus Drug Library (Shanghai Institute for Advanced Immunochemical Studies, SIAIS), which includes ~10,000 compounds, were used. The preliminary screening reaction mixture included 0.2 µM protein, 20 µM substrate and 50 µM compounds. The compounds of interest were defined as those with a percentage of inhibition over 60% compared with the reaction in the absence of inhibitor. IC50 values of seven drug leads were measured using 0.2 µM protein, 20 µM substrate and 11 different inhibitor concentrations. In order to exclude inhibitors possibly acting as aggregators, detergent-based control was performed by adding 0.001% or 0.01% freshly made up Triton X-100 to the reaction at the same time²⁴. All experimental data was analyzed using GraphPad Prism. All experiments were performed in triplicate.

Molecular docking

To understand the binding interaction of these molecules with COVID-19 virus M^{pro}, two different molecular docking methods, i.e., Glide (v8.2)³⁸ and iFitDock⁴⁰ were used to predict their binding poses. Then a 3D molecular similarity calculation method, SHAFTS⁴¹, was used for molecular alignment poses enumeration by matching the critical pharmacophore and volumetric overlay between the N3 molecule within the M^{pro} structure and the six drug candidates. However, the selenium atom of ebselen could not be treated by any of these above methods, so sulfur was used to replace it in the calculations. Then the obtained optimal superposition of these molecules was used to assess the reasonability of the predicted binding poses from the two docking methods, and only the binding orientations which were consistent among different methods were kept for constructing the initial complexes. Finally, these complexes were further optimized and re-scored by using MM-GBSA module⁴² of Schrödinger, and the residues within 5 Å around the ligand were refined.

Antiviral and cytotoxicity assays for compounds from high-throughput screening

The *in vitro* antiviral efficacy of the drug candidates on Vero cells were determined by qRT-PCR. About 1×10⁴ Vero cells were seeded into a 96-well plate and incubated for 20-24 h at 37 °C. All the infection experiments were performed at biosafety level-3 (BSL-3). Cells were

pre-treated with the drug candidates (10 µM) for 1 h; the COVID-19 virus (MOI of 0.01) was subsequently added to allow infection for 2 h. Then. the virus-drug mixture was removed and cells were further cultured with fresh drug-containing medium. At 72 h post infection (p.i.), viral RNA (vRNA) was extracted from the culture supernatant using OIAamp viral RNA mini kit (Qiagen, Germany) according to the manufacturer's recommendation and detected by qRT-PCR assay using the COVID-19 virus-specific primers. Because shikonin showed cellular toxicity at the test concentration, its antiviral activity assay did not further proceed. Viral RNA copies per milliliter were determined using a synthetic RNA fragment to amplify the target region. The linearized plasmid containing S gene of COVID-19 virus was subjected to in vitro transcription. The resulting RNA transcripts were purified and then quantified using spectrophotometry on Nanodrop 2000 (Thermo Fisher Scientific. USA). The purified RNA was diluted 10-fold serially using RNase-free water and was detected using qRT-PCR. Threshold cycle (Ct) values for the known concentrations of the RNA were plotted against the log of the number of genome equivalent copies. The resultant standard curve was used to determine the number of genome equivalents of vRNA in the samples. The determination of the detection limit was based on the lowest level at which vRNA was detected and remained within the range of linearity of a standard curve (Ct value of 38). TaqMan primers for COVID-19 virus are 5'-TCCTGGTGATTCTTCTTCAGG-3' and 5'-TCTGAGAGAGGGTCAAGTGC-3' with COVID-19 virus probe 5'-FAM-AGCTGCAGCACCAGCTGTCCA-BHQ1-3'. The cytotoxicity of the tested drugs on Vero cell were determined by MTS cell proliferation assays (Promega, USA). 1×10⁴ cells were seeded into a 96-well plate and incubated for 20-24 h at 37 °C. After that, the medium was removed, and 100 µl of medium containing decreasing concentrations of antiviral compounds were added to the wells. After 4 days incubation at 37 °C, MTS assays were performed according to manufacturer's protocols. All experiments were performed in triplicate. Vero cells were obtained from ATCC(American Type Culture Collection) with authentication service. All cell lines were tested negative for mycoplasma contamination. No commonly misidentified cell lines were used.

Antiviral and cytotoxicity assays for cinanserin

For the antiviral assay, a clinical isolate COVID-19 virus³ was propagated in Vero E6 cells, and viral titer was determined as described previously⁴³. All the infection experiments were performed at BSL-3. Pre-seeded Vero E6 cells (5×10⁴ cells/well) were pre-treated with the different concentrations of cinanserin for 1 h and the virus was subsequently added (MOI of 0.05) to allow infection for 2 h. Then, the virus-drug mixture was removed and cells were further cultured with fresh drug containing medium. At 24 h p.i., the cell supernatant was collected and vRNA in supernatant was subjected to qRT-PCR analysis. For cytotoxicity assays, Vero E6 cells were suspended in growth medium in 96-well plates. The next day, appropriate concentrations of cinanserin were added to the medium. After 24 h, the relative numbers of surviving cells were measured by CCK8 (Beyotime, China) assay in accordance with the manufacturer's instructions. All experiments were performed in triplicate. Vero E6 cells were obtained from ATCC with authentication service. All cell lines were tested negative for mycoplasma contamination. No commonly misidentified cell lines were used.

Plaque-reduction assays

 1×10^5 Vero E6 cells were seeded in a 24-well plate and treated with different doses of the inhibitors. All the infection experiments were performed at BSL-3. Inhibitors with different dilution concentrations were mixed with COVID-19 virus (100 PFU), 200 µl mixtures were inoculated onto monolayer Vero E6 cells for 1 h. After removing the supernatant, the plate was washed twice with DMEM medium, cells were incubated with 0.9% agarose containing appropriate concentrations of inhibitors. The overlay was discarded at 4 days p.i. and cells were fixed for 30 min in 4% polyoxymethylene and stained with crystal

violet working solution. The plaque forming units were determined. All experiments were performed in four biological replicates.

Intact protein analysis

2.5 μ l of compounds (10 mM in DMSO) were added into 50 μ l of COVID-19 virus M^{pro} (10 mg/ml). The mixtures were kept in room temperature for 30 min. Liquid chromatography-mass spectrometry (LC-MS) analyses were performed in positive-ion mode with a quadrupole-time-of-flight (QTOF) mass spectrometer (Agilent 6550, USA) coupled with a high-performance liquid chromatograph (HPLC, Agilent 1260, USA) for detecting the molecular weight of intact proteins. The samples were eluted from a Phenomenex Jupiter C4 300Å LC Column (2×150 mm, 5 μ m) over a 15 min gradient from 5% to 100% acetonitrile containing 0.1% formic acid at a flow rate of 0.5 ml/min. The acquisition method in positive-ion mode with Dual Agilent Jet Stream electrospray voltage used a capillary temperature of 250 °C, a fragmentor of 175 V, a capillary voltage of 3000 V. Mass deconvolution was performed using Agilent MassHunter Qualitative Analysis B.06.00 software with BioConfirm Workflow.

Tandem MS/MS analysis

The samples were precipitated and redissolved by 8 M urea, and then digested for 16 h at 25 °C by chymotrypsin at an enzyme-to-substrate ratio of 1:50 (w/w). The digested peptides were desalted and loaded onto a homemade 30 cm-long pulled-tip analytical column (ReproSil-Pur C18 AQ 1.9 µm particle size, Dr. Maisch GmbH, 75 µm ID× 360 µm OD) connected to an Easy-nLC1200 UHPLC (Thermo Fisher Scientific, USA) for mass spectrometry analysis. The elution gradient and mobile phase constitution used for peptide separation were as follows: 0-1 min, 4%-8% B; 1-96 min, 8-35% B; 96-104 min, 35-60% B; 105-120 min, 60-100% B (mobile phase A: 0.1% formic acid in water; mobile phase B: 0.1% formic acid in 80% acetonitrile) at a flow rate of 300 nl/min. Peptides eluted from the LC column were directly electro-sprayed into the mass spectrometer with the application of a distal 1.8-kV spray voltage. Survey full-scan MS spectra (from m/z 300-1800) were acquired in the Orbitrap analyzer (Q Exactive, Thermo Fisher Scientific, USA) with resolution r = 70,000 at m/z 400. The top 20 MS/MS events were sequentially generated and selected from the full MS spectrum at a 30% normalized collision energy. The dynamic exclusion time was set at 10 seconds. One acquisition cycle includes one full-scan MS spectrum followed by top 20 MS/MS events, sequentially generated on the first to the twentieth most intense ions selected from the full MS spectrum at a 28% normalized collision energy. The acquired MS/MS data were analyzed UniProtKB E.coli database (database released on Nov. 11, 2016) containing nsp5 using Protein Discoverer 2.1. In order to accurately estimate peptide probabilities and false discovery rates (FDR), we used a decoy database containing the reversed sequences of all the proteins appended to the target database. FDR was set at 0.01. Mass tolerance for precursor ions was set at 20 ppm. Chymotrypsin was defined as cleavage enzyme and the maximal number of missed cleavage sites was set at 4. Protein N-terminus acetylation, methionine oxidation and compounds covalent bindings were set as variable modifications. The modified peptides were manually checked and labeled.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

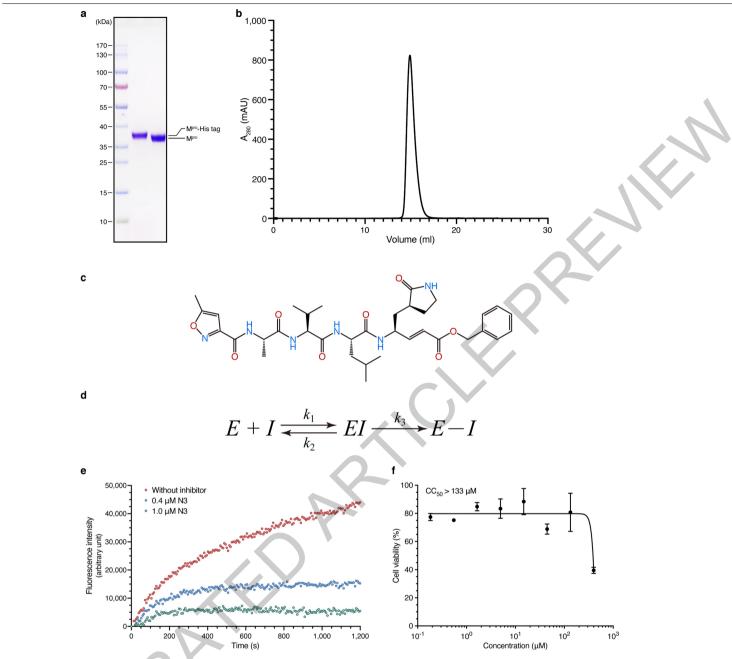
The PDB accession No. for the coordinates of COVID-19 virus M^{pro} in complex with N3 is 6LU7 (Deposited: 2020-01-26; Released: 2020-02-05).

Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. Coronavirus main proteinase (3CL(pro)) structure: Basis for design of anti-SARS drugs. *Science* **300**, 1763-1767, https://doi.org/10.1126/science.1085658 (2003).

- Winter, G. xia2: an expert system for macromolecular crystallography data reduction. Journal of applied crystallography 43, 186-190 (2010).
- McCoy, A. J. et al. Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007).
- Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallographica Section D-Structural Biology 74, 68-84, https://doi.org/10.1107/ s2059798317016035 (2018).
- Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography 66, 486-501 (2010).
- Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallographica Section D-Structural Biology 68, 352-367, https://doi.org/ 10.1107/s0907444912001308 (2012).
- Friesner, R. A. et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. *Journal of Medicinal Chemistry* 47, 1739-1749, https://doi.org/10.1021/jm0306430 (2004).
- Greenwood, J. R., Calkins, D., Sullivan, A. P. & Shelley, J. C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. *Journal of computer-aided molecular design* 24, 591-604 (2010).
- Bai, F. et al. Free energy landscape for the binding process of Huperzine A to acetylcholinesterase. Proceedings of the National Academy of Sciences of the United States of America 110, 4273-4278, https://doi.org/10.1073/pnas.1301814110 (2013).
- Liu, X. F., Jiang, H. L. & Li, H. L. SHAFTS: A Hybrid Approach for 3D Molecular Similarity Calculation. 1. Method and Assessment of Virtual Screening. *Journal of Chemical Information and Modeling* 51, 2372-2385, https://doi.org/10.1021/ci200060s (2011).
- Guimaraes, C. R. W. & Cardozo, M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. *Journal of Chemical Information and Modeling* 48, 958-970, https://doi.org/10.1021/ci800004w (2008).
- Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Research* **30**, 269-271, https://doi.org/10.1038/ s41422-020-0282-0 (2020).

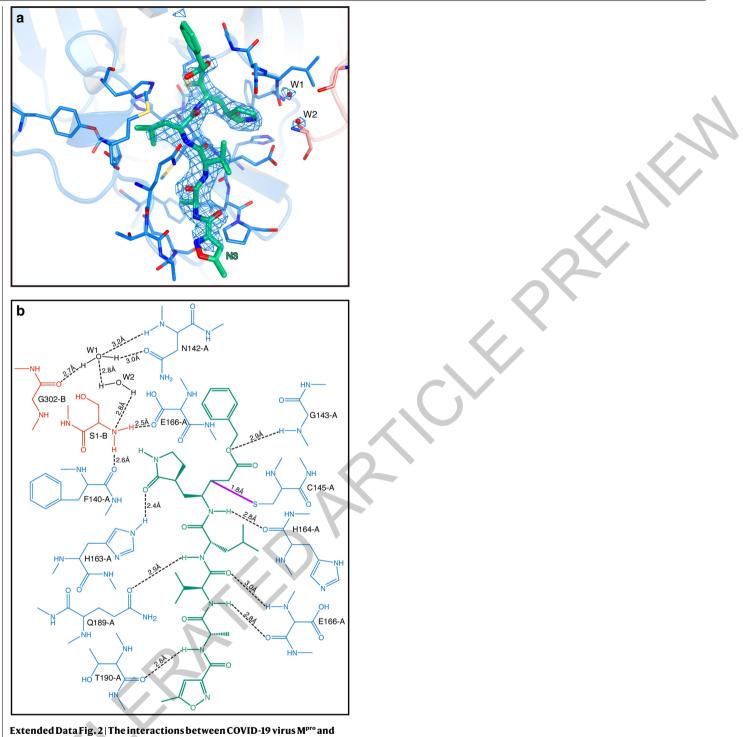
Acknowledgements We would like to thank Ying Lei and Juan Kong from High Throughput Platform, staff from Analytical Chemistry Platform at Shanghai Institute for Advanced Immunochemical Studies, for their technical support. We are grateful to National Centre for Protein Science Shanghai and The Molecular and Cell Biology Core Facility of the School of Life Science and Technology, ShanghaiTech University for use of their instrumentation and technical assistance. We thank Prof. Zhijie Liu, and Haixia Su for discussion. We also thank the staff from beamlines BL17U1, BL18U1 and BL19U1 at Shanghai Synchrotron Radiation Facility (China). This work was supported by grants from National Key R&D Program of China (grant No. 2017/FC0840300 to Z.R.), Project of International Cooperation and Exchanges NSFC (grant No. 81520108019 to Z.R.), Science and Technology Commission of Shanghai Municipality (grant No. 20431900200) and Department of Science and Technology of Guangxi Zhuang Autonomous Region (grant No. 2020AB40007).

Author contributions Z.R. and H.Y. conceived the project; Z.J., H.J., Z.R., and H.Y. designed the experiments; Z.J., X.D., Y.Duan., J.Y., T.Y., Xiaoce Liu and Xiuna Yang cloned, expressed, purified and crystallized proteins; Z.J., Y.Z., B.Z. and F.L. collected the diffraction data; B.Z. and Xiang Liu solved the crystal structure; Z.J., X.D., Y.Duan. and JY. performed enzymatic activity and inhibition assay, high-throughput drug screen and IC50 measurement; L.W. and F.B. performed virtual screening and molecular docking; Y.X., L.Z. and H.L. performed enzymatic inhibition, cell-based antiviral and cytotoxicity assay for cinanserin; Y.Deng. and X. Li performed qRT-PCR analysis and cytotoxicity assay of N3; M.L., R.J. and Xinglou Yang performed plaque-reduction assay; C.P. performed intact protein and tandem MS/MS analyses; Z.J., X.D., Y.Deng., C.P., F.B., H.L., Xiang Liu, K.Y., L.G., W.X., G.X., C.Q., Z.S., H.J., Z.R. and H.Y. maltyzed and discussed the data; Z.J., X.D., F.B., Xiang Liu, L.G., G.X., C.Q., Z.S., H.J., Z.R. and H.Y. wrote the manuscript.

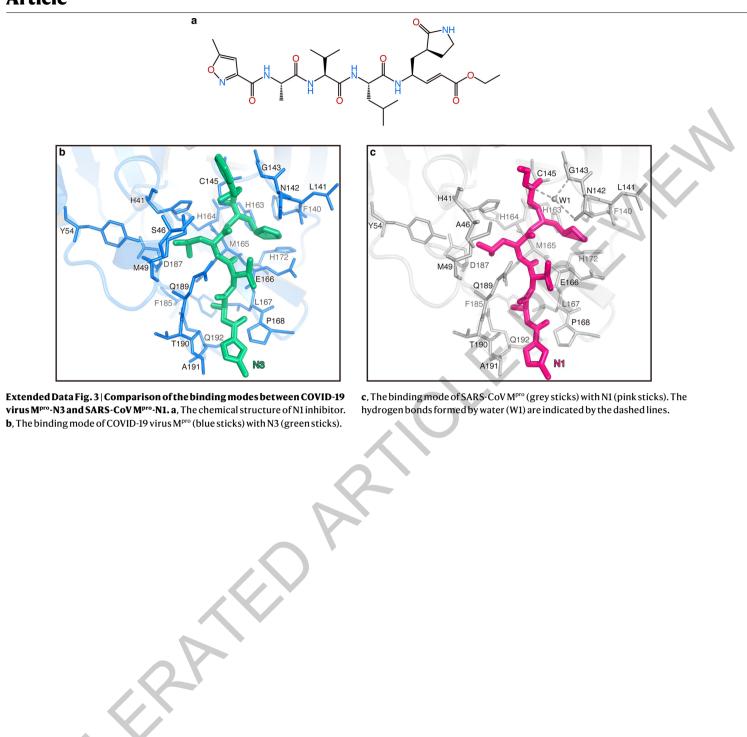

Competing interests The authors declare no competing interests.

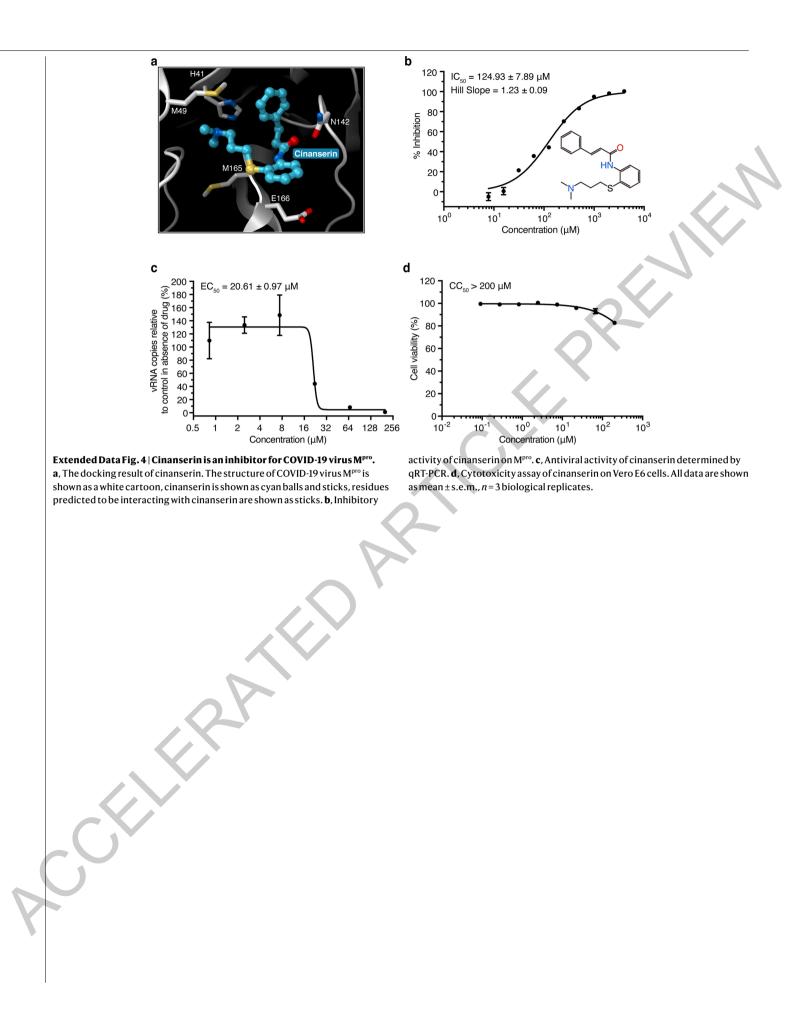
Additional information

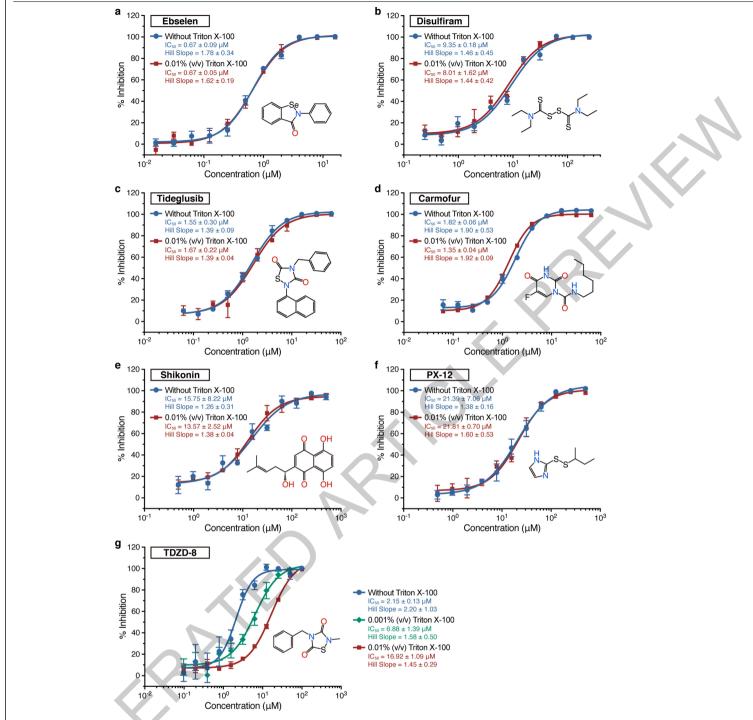
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-2223-y.


Correspondence and requests for materials should be addressed to H.J., Z.R. and H.Y. **Peer review information** *Nature* thanks Julien Lescar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

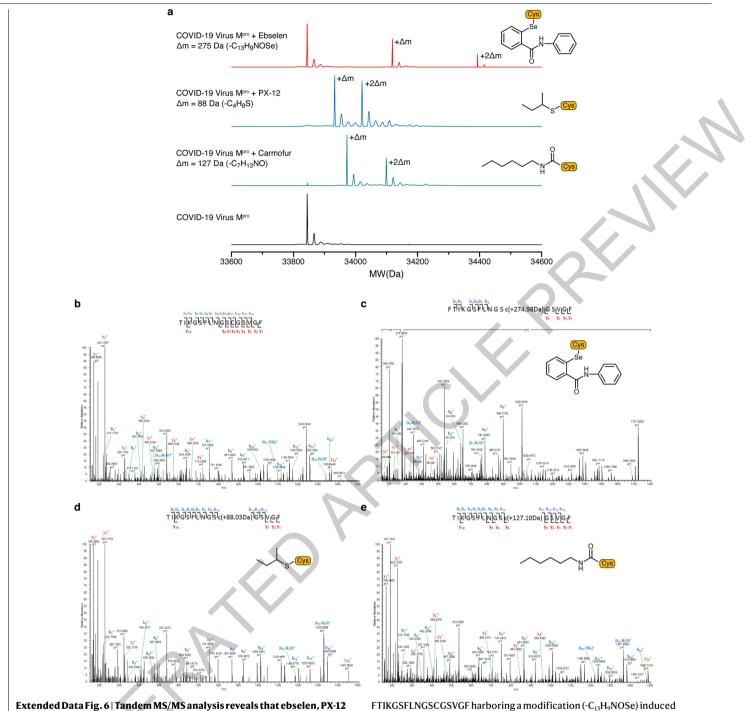
Reprints and permissions information is available at http://www.nature.com/reprints.

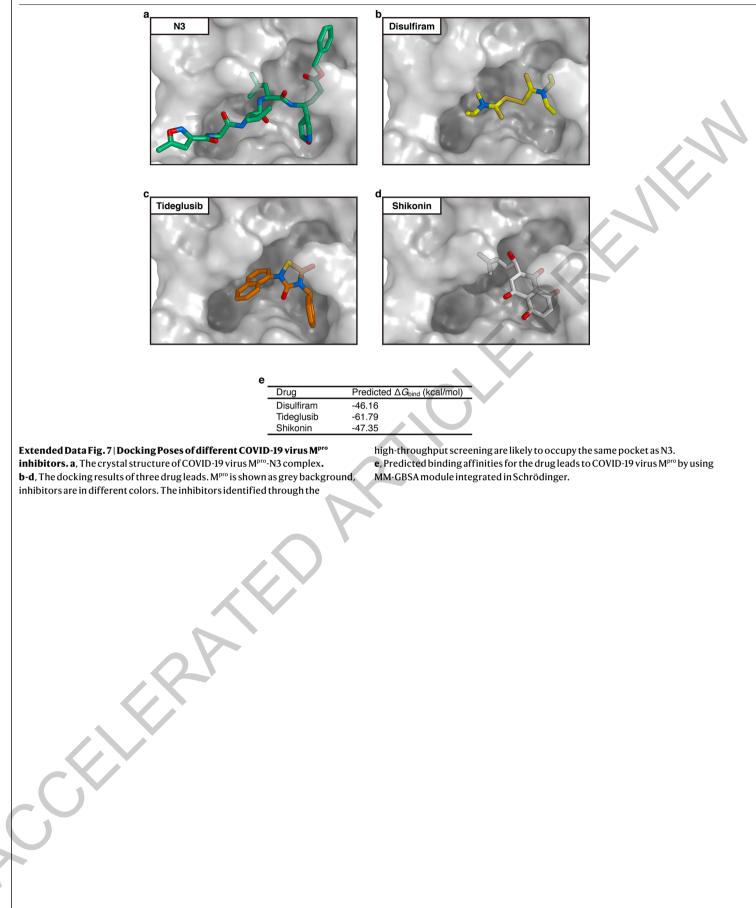



Extended Data Fig. 1 | **The purification of COVID-19 virus M^{pro} and the inhibitory assay of N3 compound. a**. The SDS-PAGE gel of COVID-19 virus M^{pro}. The first lane: marker; the second lane: M^{pro} before treating with rhinovirus 3C protease; third lane: M^{pro} after the cleavage of C-terminal His tag. For gel source data, see Supplementary Figure 1. b, Size-exclusion chromatography profile of


 M^{pro} . **c**, The chemical structure of N3 inhibitor. **d**, Inhibition mechanism for N3. **e**, Typical inhibition curves for N3. **f**, Cytotoxicity assay of N3 on Vero cells, data are shown as mean ± s.e.m., n = 3 biological replicates. The data (**a**, **b**, **f**) are representative of three independent experiments with similar results.

Extended Data Fig. 2 | **The interactions between COVID-19 virus M**^{pro} **and N3. a**, The F_o - F_c omit map (contour level = 3 σ , shown as the blue mesh). **b**, Detailed view of the interactions between the inhibitor N3 and COVID-19 virus M^{pro}. M^{pro} residues are shown in blue (Protomer A) and salmon (Protomer B); N3 is in green, water is in black. The hydrogen bonds are shown as black dashed lines. The covalent bond between N3 and C145-A is in purple.




Extended Data Fig. 5 | **The detergent-based assay for drug leads. a-f**, The IC_{50} values determined by in the presence or absence of 0.01% Triton X-100, which showed that detergent did not affect the results. **g**, Different concentrations of

Triton X-100 notably affected IC₅₀ curves for TDZD-8. All data are shown as mean \pm s.e.m., n = 3 biological replicates.

and carmofur are able to covalently bind to C145 of COVID-19 virus M^{pro}. a, Molecular weight of apo COVID-19 virus M^{pro} and compounds treated M^{pro}. The mass shifts (Δ m) of the proteins indicate that more than one molecular of the compounds can be covalently bonded to one molecular of M^{pro}. b-e, A higher-energy collisional dissociation (HCD) MS/MS spectrum recorded on the [M+H]²⁺ ion b, at m/z 787.3852 of the M^{pro} unmodified peptide TIKGSFLNGSCGSVGF, c, at m/z 998.4152 of the M^{pro} modified peptide

FTIKGSFLNGSCGSVGF harboring a modification (- $C_{13}H_9NOSe$) induced by ebselen on C145, **d**, at m/z 831.4080 of the M^{pro} modified peptide TIKGSFLNGSCGSVGF harboring a modification(- C_4H_8S) induced by PX-12 on C145, **e**, at m/z 850.9414 of the M^{pro} modified peptide TIKGSFLNGSCGSVGF harboring a modification(- $C_7H_{13}NO$) induced by carmofur on C145. Predicted b- and y-type ions (not including all) are listed above and below the peptide sequence, respectively. The experiment was performed once.

Extended Data Table 1 | Data collection and refinement statistics

	PDB code: 6LU7*
Data collection	
Space group	C2
Cell dimensions	
a, b, c (Å)	97.931, 79.477, 51.803
α, β, γ (°)	90, 114.55, 90
Resolution (Å)	50.00-2.16 (2.22-2.16)*
R _{merge}	18.9 (147.2)
Ι/σΙ	6.3 (3.2)
Completeness (%)	100.0 (100.0)
Redundancy	6.6 (6.1)
Refinement	
Resolution (Å)	50.00-2.16
No. reflections	19455 (1431)
Rwork / Rfree	0.2020/0.2350
No. atoms	
Protein	2367
Ligand/ion	49
Water	84
B-factors	
Protein	42.7
Ligand/ion	46.3
Water	44.2
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.474

*A single crystal was used for data collection and structure determination. *Values in parentheses are for highest-resolution shell.

natureresearch

Corresponding author(s): Hualiang Jiang, Zihe Rao & Haitao Yang

Last updated by author(s): Mar 28, 2020

28 2020

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see <u>Authors & Referees</u> and the <u>Editorial Policy Checklist</u>.

Statistics

For	all st	atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Cor	firmed
		The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
		A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
\boxtimes		The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
\boxtimes		A description of all covariates tested
\square		A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
		A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
\boxtimes		For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.
\boxtimes		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
\boxtimes		For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
\boxtimes		Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
		Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.

Software and code

Policy information at	pout <u>availability of computer code</u>
Data collection	Blu-Ice BL17U1; EnVision Manager (v1.13.3009.1409)
Data analysis	Xia2 (v0.3.8.0); HKL2000 (v712); CCP4 (v7.0.077); Coot (v0.8.9.2); Phenix (v1.17.1-3660); Glide (v8.2); Maestro (Schrödinger 2019-1); EpiK (Schrödinger 2019-1); GraphPad Prism (v8.3.1); Microsoft Excel (v16.35); PyMOL (v2.3.4); iFitDock (1.0); SHAFTS (1.0); MM-GBSA (Schrödinger 2019-1); Agilent MassHunter Qualitative Analysis (B.06.00); Protein Discoverer (2.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a <u>data availability statement</u>. This statement should provide the following information, where applicable: - Accession codes, unique identifiers, or web links for publicly available datasets

- A list of figures that have associated raw data
- A description of any restrictions on data availability

The PDB accession No. for the coordinates of COVID-19 virus main protease in complex with N3 is 6LU7.

Field-specific reporting

K Life sciences

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>

Life sciences study design

All studies must dis	close on these points even when the disclosure is negative.
Sample size	Sample size estimation was not relevant for this study, as it does not report on a statistical evaluation of effects between two or more groups.
Data exclusions	Samples deemed to be technical failures were excluded. Two data points were verified to be extreme outliers and were therefore removed when calculating the IC50 values: Extended Data Fig. 5a (0.0625 µM ebselen with 0.01% Triton X-100, one of the three biological replicates) Extended Data Fig. 5g (0.390625 µM TDZD-8 with 0.001% Triton X-100, one of the three biological replicates) Removal of these data points do not alter any conclusions made in this study.
Replication	To ensure reproducibility of experimental findings, each assay was performed at least three times to confirm the results. IC50 measurements (Fig. 3; Extended Data Fig. 4b; Extended Data Fig. 5) were carried out with three biological replicates for each data point and these data were used to calculate mean values. Antiviral activity assays (qRT-PCR, shown in Fig. 4a and Extended Data Fig. 4c) were performed in three biological replicates. Antiviral activity assays (plaque-reduction assays, shown in Fig. 4b, c and Extended Data Fig. 8) were carried out with four biological replicates. Cytotoxicity assays (Extended Data Fig. 1f; Extended Data Fig. 4d) were carried out with three biological replicates.
Randomization	Animals or human research participants were not involved in this study and, as such, samples were not randomized for the experiments.
Blinding	Animals or human research participants were not involved in this study and, as such, samples were not blinded for the experiments.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).
Research sample	State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source.
Sampling strategy	Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.
Data collection	Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
Timing	Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Non-participation	State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.
Randomization	If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.	
Research sample	Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.	
Sampling strategy	Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.	
Data collection	Describe the data collection procedure, including who recorded the data and how.	
Timing and spatial scale	Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken	
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.	
Reproducibility	Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.	
Randomization	Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.	
Blinding	Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.	
Did the study involve field work? Yes No		

Field work, collection and transport

Field conditions	Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location	State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access and import/export	Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information).
Disturbance	Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems			Methods	
n/a	Involved in the study	n/a	Involved in the study	
\boxtimes	Antibodies	\ge	ChIP-seq	
	Eukaryotic cell lines	\ge	Flow cytometry	
\boxtimes	Palaeontology	\ge	MRI-based neuroimaging	
\boxtimes	Animals and other organisms		•	
\boxtimes	Human research participants			
\boxtimes	Clinical data			

Antibodies

Antibodies used	Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.
	Describe the validation of each primary antibody for the species and application, noting any validation statements on the manufacturer's website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

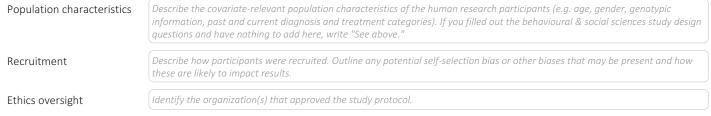
Eukaryotic cell lines

Policy information about <u>cell lines</u>	
Cell line source(s)	1. African green monkey origin, Vero from ATCC; 2. African green monkey origin, Vero E6 from ATCC.
Authentication	All monkey cells were from ATCC with authentication. The authentication was performed by morphology check under microscopes and growth curve analysis.
Mycoplasma contamination	We confirm that all cells were tested as mycoplasma negative.
Commonly misidentified lines (See ICLAC register)	No commonly misidentified cell lines were used.

Palaeontology

Specimen provenance	Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information).
Specimen deposition	Indicate where the specimens have been deposited to permit free access by other researchers.
Dating methods	If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.


Animals and other organisms

Policy information about <u>stu</u>	dies involving animals; ARRIVE guidelines recommended for reporting animal research
Laboratory animals	For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.
Wild animals	Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals.
Field-collected samples	For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.
Ethics oversight	Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

$\label{eq:policy} \mbox{Policy information about } \underline{\mbox{studies involving human research participants}}$

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy	y informa	ation	about	clinical	studios
POIIC	y iiiiOiiiid	ation	about	CIIIICal	studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.		
Clinical trial registration	registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.	
Study protocol	Note where the full trial protocol can be accessed OR if not available, explain why.	
Data collection	Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.	
Outcomes	Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.	

ChIP-seq

Data deposition

ſ	Confirm that both raw and final	processed data have been	deposited in a	public database such as	GEO

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links May remain private before publication.	For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data.
Files in database submission	Provide a list of all files available in the database submission.
Genome browser session (e.g. <u>UCSC</u>)	Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology	
Replicates	Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth	Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.
Antibodies	Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.
Peak calling parameters	Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.
Data quality	Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software	Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation	Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument	Identify the instrument used for data collection, specifying make and model number.
Software	Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details.

Cell population abundance

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined.

Gating strategy

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design		
Design type	Indicate task or resting state; event-related or block design.	
Design specifications	Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.	
Behavioral performance measures	State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).	
Acquisition		
Imaging type(s)	Specify: functional, structural, diffusion, perfusion.	
Field strength	Specify in Tesla	
Sequence & imaging parameters	Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.	
Area of acquisition	State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.	
Diffusion MRI Used	Not used	
Preprocessing		
Preprocessing software	Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).	
Normalization	If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.	
Normalization template	Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.	
Noise and artifact removal	Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).	
Volume censoring	Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.	
Statistical modeling & inference	2	
Model type and settings	Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).	
Effect(s) tested	Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.	
Specify type of analysis: Whole brain ROI-based Both		

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a	Involved in the study	
-----	-----------------------	--

Functional and/or effective connectivity Graph analysis Multivariate modeling or predictive analysis	
Functional and/or effective connectivity	Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).
Graph analysis	Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).
Multivariate modeling and predictive analysis	Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.