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“These are dark times, there is no denying. Our world has
perhaps faced no greater threat than it does today.” This iconic
quote from an acclaimed J. K. Rowling novel series (39)
resembles the current worldwide fight against COVID-19.
COVID-19 (alias 2019-nCov), a novel disease caused by
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2), emerged in December 2019 from Wuhan, China, and has
since spread like wildfire to more than 200 countries and
territories. On January 30, 2020, the outbreak was declared a
Public Health Emergency of International Concern. As of April
6, 2020, there are over 1.2 million confirmed cases worldwide
with near 68,000 associated deaths (47). In the United States
alone, 330,891 positive cases and 8,910 mortalities have been
reported to date (8). It is petrifying that the number of con-
firmed cases and deaths day-to-day are continuously escalat-
ing, which foreshadows that SARS-CoV-2 is not going down
without a fight. This prompts a critical question: What
existing or innovative measures need to be taken to win the
COVID-19 battle? As one strategy, society has been asked
to engineer a “social vaccination,” which involves restrict-
ing social gatherings, minimizing public appearances, and
implementing a “rule-of-thumb” to keep at least 6 feet apart
from others. This tactic is appropriate as SARS-CoV-2 is
extremely contagious by transmitting via human-to-human
respiratory droplets; intriguingly, it has been demonstrated
that the virus can be found in the feces, suggesting that the
fecal route may be another mode of transmission (18, 46).
Moreover, many individuals may have been infected with
SARS-CoV-2 but do not exhibit typical symptoms, making
those folks potential asymptomatic carriers (28). For others
infected with SARS-CoV-2, they can exhibit symptoms of
acute respiratory disease or pneumonia (28).

Clinicians and researchers are hard at work to uncover
therapeutics to treat COVID-19. This includes targeting the
receptor binding-domain on the spike (S) protein layer on the
“corona” or halo of SARS-CoV-2, which mediates virus fusion
and entry into host epithelial cells lining mucosal surfaces such
as the lungs and intestine (35, 43, 45, 48). Because angiotensin
converting enzyme 2 (ACE2) is the receptor for the S protein
to mediate viral invasion, soluble ACE2 might be a potential
therapeutic, which is supported by previous reports demon-
strating that it can inhibit infection of the SARS-CoV-2 rela-

tive, severe acute respiratory syndrome coronavirus (SARS-
CoV) (5, 42). In a similar manner, there is the concept of
repurposing known antiviral agents (29) and redirecting exist-
ing antibiotics that were originally designed against bacterial
infections (i.e., teicoplanin, antibiotic that treats Staphylococ-
cal infections) (3) to thwart SARS-CoV-2. One such agent that
recently gained substantial societal and media attention is the
antimalarial drug hydroxychloroquine, which has been shown
to inhibit SARS-CoV-2 infection in in vitro settings (30) and
reduce viral load, in combination with azithromycin, for
COVID-19 patients in an open-label nonrandomized clinical
trial (16). However, it must be emphasized that the therapeutic
potential of hydroxychloroquine is still controversial and begs
for further investigation. Aside from repurposing existing ther-
apies, there is an increasing demand for immunotherapy,
driven by immunoinformatics and comparison homology se-
quencing with SARS-CoV to narrow down epitopes as poten-
tial candidates to design a peptide vaccine against SARS-
CoV-2 (1, 4, 7, 19). Another approach that has been proposed
is to passively immunize newly infected patients with IgG
antibodies collected from patients that have recovered from
COVID-19 (24).

Unfortunately, for the time being, there is no effective
vaccine or alternative treatment available for COVID-19. De-
spite the ongoing efforts, we must be aware of the potential
limitations and consequences of some current conventional
strategies to fight this pathogen. For one, would conventional
approaches be able to keep up with SARS-CoV-2, which is
rapidly evolving and acquiring new single nucleotide muta-
tions (33) that allow it to escape antiviral drugs? It is impera-
tive to also acknowledge that there is no clinical, effective
antiviral treatment against coronaviruses, like SARS-CoV and
MERS-CoV (12), which further predicts that antiviral ap-
proaches may not be the most viable against SARS-CoV-2 to
treat COVID-19 disease. There is also a high risk of antibody-
dependent enhancement, which can assist SARS-CoV-2 viru-
lence through noncanonical viral-receptor-dependent path-
ways. Prior studies on other coronaviruses inform us that upon
antibody-based drug therapy, the S protein on coronaviruses
can undergo a conformational change and enter host cells
through the Fc region of IgG (33). Such pitfalls inherent in
conventional treatments argue in favor of consideration for
more novel “outside the box,” nonconventional therapies to
abate COVID-19.
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The fact that many people infected with SARS-CoV-2 will
clear the virus without even developing symptoms suggests
that the immune system may hold the key to defeat this virus.
While surely this involves adaptive immunity and suggests
vaccination will play a central role in ameliorating this pan-
demic, we would like to propose harnessing innate immunity
as a potential approach to immediately combat COVID-19.
Specifically, we suggest immunomodulation through activation
of the innate immune sensor toll-like receptor 5 (TLR5), as one
innovative approach to fight COVID-19. TLR5 is an extracel-
lular pattern recognition receptor that recognizes flagellin, a
structural protein of flagellum found in motile Gram-positive
and Gram-negative bacteria (21). We hypothesize that flagellin
could act as a trojan horse “danger” signal, which favorably
tricks” the host into thinking that immune responses are re-
quired to subdue a “bacterial” infection but instead triggers
antiviral responses to strike SARS-CoV-2. In one of our recent
studies, we serendipitously discovered that flagellin-mediated
TLR5 activation on dendritic cells induces interleukin (IL)-22,
whereupon this cytokine production was able to immediately
eliminate rotavirus (RV) infection in immune-sufficient and
immunocompromised mice (50). We discovered that flagellin
also elicited NLR family CARD domain containing 4
(NLRC4)-dependent IL-18 production to promote RV clear-
ance (50). It is noteworthy that this effective and efficient
antiviral response of flagellin was independent of interferon
(IFN) responses (50). Considering that coronaviruses are ca-
pable of hijacking type I IFN antiviral responses through
structural and nonstructural proteins (9), utilizing the flagellin-
TLR5 axis could provide an effective loophole to target and
eliminate SARS-CoV-2. Ironically, it was recently found that
flagellin is also capable of inducing TLR5-mediated production
of IFN-� and subsequent activation of type I IFN responses

(26), which presents a potential avenue to restore antiviral
immune defenses that are impaired during coronavirus infec-
tions.

Aside from our studies, there are multiple reports that
delineate the antiviral capability of flagellin against other
infections, particularly for viruses that, like SARS-CoV-2,
replicate in epithelial cells. For one, prophylactic and thera-
peutic flagellin administration reduces viral load in the lungs of
mice infected with influenza A virus (17). In other investiga-
tions, the coadministration of flagellin with inactivated influ-
enza virus induced influenza-specific IgA and IgG titers, which
highlights the potential of flagellin as a potent mucosal adju-
vant (13, 41). Similarly, oral administration of flagellin with
the trivalent inactivated influenza vaccine was critically impor-
tant for antibody production, where titers were significantly
reduced in TLR5-deficient mice (34). Besides promoting anti-
body production, flagellin is important for the maturation of
lung dendritic cells (14), inhibition of epithelial apoptosis (44),
production of IL-17C cells (36), and induction of cathelicidin-
dependent antimicrobial responses (49), all of which coincide
with the essential nature of flagellin’s mucosal adjuvant activ-
ity. It is noteworthy that flagellin was found to be very
effective in activating neonatal lung antigen-presenting cells
(40). Furthermore, flagellin-TLR5 activation was observed to
protect mice from invasive pneumonia through early clearance
of Pseudomonas aeruginosa in respiratory epithelial cells (2,
32). These studies support the concept that flagellin or phar-
macological TLR5 agonists (i.e., entolimod, currently under
clinical trials) can be redirected as a potent therapeutic to
eliminate SARS-CoV-2.

In company with immunomodulation of TLR5, we also posit
the idea of modulating neutrophil antimicrobial responses
through use of host-derived nucleases as a nonconventional
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Fig. 1. Innate immunity may be the key to defeat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the early stage of infection, coronaviruses
are capable of inhibiting host type I interferon (IFN) antiviral immune defenses. We propose to counteract this by utilizing flagellin to activate Toll-like receptor
5 (TLR5). TLR5 can induce the production of cytokines (i.e., IL-22, IL-18) and IFN-�, which may restore the impaired immune responses. In the late stage of
infection, there is a proinflammatory cytokine storm initiated by innate immune cells like neutrophils (NEU). Theoretically, this can result in inappropriate levels
of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS) that cause unwarranted collateral damage. Deoxyribonuclease I (DNase I)-mediated
degradation of NETs could provide a therapeutic avenue to suppress excess injury.
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method to combat COVID-19. COVID-19 patients are reported
to have elevated neutrophil levels (31, 38). Hypothetically, it is
plausible that elevated neutrophil abundance is associated with
increased reactive oxygen species (ROS) and neutrophil extra-
cellular traps (NETs), both of which are potent antimicrobial
defenses; yet inappropriate levels of these neutrophil-derived
products can inflict tissue damage. This tissue damage could
contribute to a “proinflammatory cytokine storm” initiated by
macrophages and monocytes infiltrating the damaged tissue
(15, 23, 37). This inflammatory response occurring at a late
stage of infection can cause aggravated respiratory/cardiovas-
cular problems. As a countermeasure, deoxyribonuclease I
(DNase I) can work to promote the clearance of overproduced
NETs and, thus, minimize unwarranted neutrophil-mediated
collateral damage (25). This concept is supported by the report
that DNase I treatment reduced NET-induced airway obstruc-
tion during respiratory syncytial virus infection (10). Further-
more, DNase I has been proven to reduce the human hepatitis
B virus (HBV) genome copy number through catabolism of the
DNA genome (20).

While modulation of TLR5 signaling via flagellin and reg-
ulation of neutrophilic immune responses via DNase I repre-
sent new avenues to fight against COVID-19, there are some
potential risks as expected with any therapeutic approach.
Exposure of flagellin has been reported to support lentiviral
pseudovirus attachment on lung epithelial cells via TLR5
activation of NF-�B signaling (6). Hence, it is plausible that
TLR5 signaling could advance SARS-CoV-2 virulence, and
TLR5-mediated proinflammatory responses could inflict un-
warranted damage. Thus, alternatively, combinations of IL-18
and IL-22, which mimic the antiviral efficacy of flagellin but
lack its potential toxicity, may be a possible therapeutic option.
In any case, the lack of immune responses exhibited in the
early stage of coronavirus infections may suggest that TLR5
agonists could be most valuable in the early phase of infection,
whereas the media-hyped chloroquine could be most useful
against late-stage infection since chloroquine is an inhibitor of
nucleic acid recognizing TLR-mediated inflammatory re-
sponses (27). Regardless, the benefits or costs of TLR5 acti-
vation would still expand the mechanistic knowledge on CO-
VID-19 pathogenesis and direct us toward appropriate thera-
peutic targets at the pertinent viral stage. In line with TLR5,
degradation of NETs through host nucleases might have po-
tential risks, as such intervention has been reported as a fuel
source for certain pathogens, such as Hemophilus influenzae
(11). Hence, if SARS-CoV-2 utilizes a similar strategy, this
could also advance its pathogenesis. However, no article to
date has associated coronaviruses with the utilization of NET
degradation via host nucleases for virulence; therefore, study-
ing this relationship could provide one of two novel findings:
1) an unexplored, yet new, mechanism for coronavirus viru-
lence or 2) a potential therapeutic (i.e., DNase I) to defeat
COVID-19 through regulation of aberrant innate immune re-
sponses.

Considering that SARS-CoV-2 infection exhibits an “early
stage” (lack of host antiviral immune responses) and a late
stage (cytokine storm), the appropriate time to administer
either flagellin or DNase I is critical since they are targeting
different aspects of viral infection. There are also other criteria
to address whether a therapeutic “significantly increases the
risk (or decreases the acceptability of the risk) associated with

the use of a drug product,” such as route of administration,
dosage level, and dosage form (22). Additionally, it is critical
to determine the half-life and potential drug-to-drug interaction
if giving a combinatorial therapy. Based on our previous
studies of flagellin protection against rotavirus infection, we
hypothesize that flagellin would be most potent within the first
48 h of infection, as this will allow for early intervention to
boost antiviral responses and block virulence. Comparatively,
DNase I would be most effective toward the late stage of
infection (after 72 h of first symptom appearance) to minimize
neutrophil/NET-mediated pulmonary and cardiovascular dam-
age. In general, many unanswered questions need to be tested
in animal models that reflect human disease.

Overall, our “2 cents” to fight against the enemy of SARS-
CoV-2 and, thus, COVID-19 disease, is immunomodulation of
hijacked host innate immunity (as summarized in Fig. 1). It is
important to acknowledge that eliciting TLR5 signaling or
restricting inappropriate neutrophil responses are only two
options out of the multitude of possibilities that can be directed
as nonconventional methods to alleviate COVID-19. We hope
that this editorial triggers alternative outlook therapies in the
COVID-19 battle, which could later be used as platforms for
preventing existing and novel viral infections. Stay safe and
stay healthy.
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