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Reducing COVID-19 burden for populations will require equi-
table and effective risk-based allocations of scarce preventive 
resources, including vaccinations1. To aid in this effort, we 
developed a general population risk calculator for COVID-19 
mortality based on various sociodemographic factors and 
pre-existing conditions for the US population, combining 
information from the UK-based OpenSAFELY study with mor-
tality rates by age and ethnicity across US states. We tailored 
the tool to produce absolute risk estimates in future time 
frames by incorporating information on pandemic dynamics 
at the community level. We applied the model to data on risk 
factor distribution from a variety of sources to project risk 
for the general adult population across 477 US cities and for 
the Medicare population aged 65 years and older across 3,113 
US counties, respectively. Validation analyses using 54,444 
deaths from 7 June to 1 October 2020 show that the model is 
well calibrated for the US population. Projections show that 
the model can identify relatively small fractions of the popula-
tion (for example 4.3%) that might experience a dispropor-
tionately large number of deaths (for example 48.7%), but 
there is wide variation in risk across communities. We provide 
a web-based risk calculator and interactive maps for viewing 
community-level risks.

The first case of SARS-CoV-2 infection in the United States was 
reported on 20 January 2020 in the state of Washington2 and to 
date, the pandemic has led to more than 240,000 COVID-19 deaths, 
making the United States by far the most affected country globally. 
However, there is high variation in rates of infections and underly-
ing deaths across US states, counties and cities. Local population 
characteristics, such as population density3 and mobility patterns4, 
as well as mitigation measures5,6, define background risk of illness 
and death across the regions. Further, predisposing factors, includ-
ing age, sex, ethnicity and racial background, social conditions and 
pre-existing conditions, put individuals within the same commu-
nity at differential risk of serious illness and mortality7–15.

To date, the United States and other countries have mostly relied 
on community-based intervention measures, such as lockdowns, 
social distancing and guidance on mask wearing, for mitigating the 
worst effects of the pandemic. A variety of pandemic scenario mod-
els with increasing sophistication are available for forecasting  
future trends in infection, hospitalizations and deaths at the popula-
tion level (https://www.cdc.gov/coronavirus/2019-ncov/covid-data/
forecasting-us.html). Although a variety of predisposing factors  
are known, there has been limited effort to incorporate these  

factors into prevention strategies and/or forecasting models.  
In the future, however, as the United States and other countries con-
tinue to face increasing societal and economic pressure for relaxing 
some of the broad intervention measures, consideration of risk 
associated with predisposing factors for individuals and at the pop-
ulation level will be important for developing more equitable strate-
gies for prevention16–18. Promising results from early phases of a 
number of vaccine trials (https://www.businesswire.com/news/
home/20201109005539/en/, https://investors.modernatx.com/news- 
releases/news-release-details/modernas-covid-19-vaccine-candidate- 
meets-its-primary-efficacy and https://www.pfizer.com/news/ 
press-release/press-release-detail/pfizer-and-biontech-conclude- 
phase-3-study-covid-19-vaccine)19–22 have raised the likelihood of 
available vaccines by the end of 2020 and a number of national  
and international bodies (https://www.csis.org/analysis/advancing- 
research-and-planning-equitable-distribution-covid-19- 
vaccine, https://www.nationalacademies.org/news/2020/07/national- 
academies-launch-study-on-equitable-allocation-of-a-covid-19- 
vaccine-first-meeting-july-24)23 have been developing frameworks 
that will allow equitable distribution of vaccines, taking into account 
differential risk for individuals and communities.

We describe the development and validation of a COVID-19 
mortality risk calculator for the US adult (aged 18 years and older) 
population, integrating information from a variety of datasets for 
the estimation of risk associated with predisposing factors. We 
further extend the calculator to integrate information from pan-
demic forecasting models so that an individual’s absolute risk can 
be informed based not only on their underlying risk factors, but also 
on community-level risk due to underlying pandemic dynamics. 
We use the information on the prevalence and co-occurrence of risk 
factors from various national databases to make population-level 
projections of risk associated with these predisposing factors for the 
adult population across 477 US cities and for the 65-years-and-older 
population enrolled in Medicare across 3,113 US counties. We pro-
vide national-, state- and city and/or county- level estimates for the 
size of populations who are at or above different risk thresholds and 
can be gradually prioritized for vaccination and other preventive 
efforts. We also provide a web-based individual-level risk calculator 
and interactive maps for viewing population-level risk projections 
to facilitate future policy decisions. The main findings and limita-
tions of the study are summarized in Table 1.

Risk of mortality associated with various age groups in the 
United States follows a comparable pattern to that reported by the 
UK OpenSAFELY study15 (Extended Data Fig. 1). Relative to their 
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respective white reference populations, African American popula-
tions in the United States (relative risk (RR) = 3.18, 95% confidence 
interval (CI): 3.02–3.36) are at a higher risk compared to the black 
population (RR = 1.88, 95% CI: 1.65–2.14) in the United Kingdom. 
Further, compared with non-Hispanic white people in the United 
States, the non-Hispanic Asian population are at an elevated risk 
(RR = 1.38, 95% CI: 1.25–1.53) and the Hispanic population 
(RR = 2.77, 95% CI: 2.60–2.94) and non-Hispanic American Indian/
Alaskan Native population (RR = 1.72, 95% CI: 1.23–2.41) are at a 
substantially elevated risk. External covariate adjustment indicates 
that accounting for other risk factors, including social deprivation 
and pre-existing conditions, such as obesity, which are more prev-
alent in various minority groups than in white populations, only 
explains a small fraction (<16.0%) of the racial differences in mor-
tality rates (Supplementary Table 1). Adjusted estimates associated 
with age and racial groups, together with estimates of risk associ-
ated with the other factors from an underlying fully adjusted model 
reported in the UK OpenSAFELY study15, are used to define a risk 
score for individuals in the United States (Supplementary Table 1).

The distribution of the risk score in the National Health Interview 
Survey (NHIS) sample indicates wide variation of risk across indi-
viduals in the United States (Extended Data Fig. 2). Overall, for 
the US adult population, we estimate that 18.1%, 11.0%, 4.3% and 
1.6% of the individuals are at or above risk thresholds associated 
with elevated (≥ 1.2-fold), substantially elevated (≥ twofold), high 
(≥ fivefold) and very-high (≥ tenfold) risk categories, respectively 
(Table 2, with 95% CIs provided in Supplementary Table 2). The 
percentage of each population that exceeds these thresholds varies 
strongly by age. Only a small fraction (0.1%) of the individuals who 
are younger than 65 years exceed the threshold for high risk. We 
further examine the distribution of other risk factors among indi-
viduals in the defined high-risk groups for the general population 
(Extended Data Figs. 3 and 4) and the 65-years-and-older popula-
tion (Extended Data Figs. 5 and 6). Males, Hispanic people, African 
American people and individuals with history of obesity, diabetes, 
cancers, high blood pressure, stroke, chronic heart disease, kidney 
disease, arthritis and respiratory diseases (excluding asthma) are 
more common in all of the high-risk groups compared with the 
general NHIS population. We observed a similar pattern for the 
65-years-and-older population.

We observed a substantial variation in risk due to predisposing 
factors across US communities (Fig. 1). The Index of Excess Risk 
(IER; Methods) varies around tenfold and eightfold across cit-
ies and counties for the underlying adult and 65-years-and-older 
Medicare populations, respectively (Supplementary Tables 3 and 4).  

A number of major cities, including Detroit, Miami, Baltimore 
City, New Orleans and Philadelphia, rank very high accord-
ing to this index. The proportion of individuals crossing vari-
ous risk thresholds varies more widely across these communities 
(Supplementary Tables 3 and 4). For example, the percentage of 
the adult populations in cities that exceed the fivefold risk thresh-
old varies from 0.4 (Layton, UT) to 10.7 (Detroit, MI). Similarly, 
the percentage of the 65-years-and-older Medicare population that 
exceeds the same threshold varies from <1.0% (multiple counties 
in CO) to >55.0% (multiple counties in TX). Risk distribution for 
the 65-years-and-older Medicare population also varies substan-
tially across the states (Extended Data Fig. 7 and Supplementary  
Table 5). Our projections also show that high-risk groups will be 
disproportionately enriched for deaths across all communities  
(Fig. 1, Extended Data Fig. 7 and Supplementary Tables 3, 4 and 5). 
For example, the ratio of the proportion of deaths that are expected 
to occur in the ≥ fivefold risk group to the proportion of the popula-
tion at or above the same risk threshold ranges 6.4–32.9 across 477 
US cities (Fig. 1).

In a negative binomial regression analysis of deaths (between 
7 June 2020 and 1 October 2020) in the 259 counties that contain 
the 477 cities, we found the coefficient of log(IER) to be statistically 
significant throughout moving windows of 2 weeks, with an aver-
age value of 0.94, close to its ideal value of 1.0, indicating excellent 
calibration of the underlying individual-level model for the popula-
tion (Methods and Supplementary Table 6). Further, in a weighted 
least-squares analysis, we found that log(IER) explains on average 
15.4% (95% CI: 12.7–17.3%) of the variation of death rates (on 
the logarithmic scale) over this time period across the underlying 
counties (Fig. 2). By comparison, population density and reported 
2-week infection rate 3 weeks before the corresponding windows 
over which deaths were aggregated explain on average 2.4% (95% 
CI: 2.3–4.1%) and 20.0% (95% CI: 16.9–27.1%) of the variance of 
the underlying death rates, respectively. In a conditional analysis 
that accounts for major regional differences in pandemic dynam-
ics, we found that IER explains as much or more of the variance of 
death rates as 3-weeks-before infection rates (Supplementary Table 
6). In an additional validation analysis, we observed similar per-
formance for an IER that was derived for the medication popula-
tion aged 65 years and older for predicting death rates across 2,999 
counties (Supplementary Table 7). In both analyses, we observed 
the relationship between IER and death rates to be close to lin-
ear throughout the range of risk (Extended Data Fig. 8). Finally, 
using the NHIS risk distribution, we projected that the underlying  
risk model is expected to have an area under the receiver operating  

Table 1 | Policy summary

Background Reducing the burden of COVID-19 illness and mortality for societies requires development of risk-based strategies for prevention 
through shielding, early vaccination and distribution of other scarce preventive resources. Such efforts could be aided by the 
development of general population models for predicting COVID-19 serious outcomes, including mortality, incorporating information 
on both individual-level risk factors and community-level pandemic dynamics.

Main findings 
and limitations

We develop a model for predicting individual-level risk for COVID-19 mortality in the United States by synthesizing information on risk 
associated with various sociodemographic factors and pre-existing health conditions from a large UK-based study15, rates associated 
with age and race available across US states and state-level projected death rates from pandemic forecasting models. Projections of 
risk across US cities and counties show wide variation in the number and percentage of high-risk individuals across US communities 
and validation analyses using mortality data show that projected risk is well calibrated. Projections also show that the underlying 
individual-level model is expected to have high discriminatory power for the US population and can effectively identify small groups 
of populations that will lead to a large majority of deaths. Limitations of the study include lack of individual-level population cohort 
data to train and validate models, exclusion of occupational exposures and reliance on various modeling assumptions. The flexible 
framework, however, will allow for rapid updating of models as new risk information emerges.

Policy 
implications

Our risk model will allow for defining priority categories for future targeted prevention efforts in a risk-coherent fashion, taking into 
account age, sex, pre-existing health conditions, racial and other social disparity and local pandemic dynamics. Current projections 
for the numbers of individuals at different levels of risk can be readily used by national and local policy makers to plan for vaccine 
allocations.
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characteristic curve (AUC) of 0.90 for individual risk prediction 
in the United States (Methods), close to that reported for the UK 
population in the OpenSAFELY study15. Further, a simulation study 

shows that the level of R2 achieved for community-level projections 
is consistent with the projected value of AUC for individual-level 
predictions (Extended Data Fig. 9).

Table 2 | Estimated percentages of the NHIS population and corresponding size of US population that exceed various risk thresholds, 
overall and within the 18–64-years or 65-years-and-older age group

Overall Aged 18–64 years Aged 65 years and over

Risk category Population size, 
million (%)

Deaths expected to 
arise from the risk 
category (%)

Population size, 
million (%)

Deaths expected to 
arise from the risk 
category (%)

Population size, 
million (%)

Deaths expected to 
arise from the risk 
category (%)

≥tenfold risk 5.4 (1.6%) 27.9% 0 (0%) 0.05% 5.4 (7.7%) 26.5%

≥fivefold risk 14.2 (4.3%) 48.7% 0.3 (0.1%) 0.7% 13.9 (20.0%) 54.1%

≥twofold risk 36.2 (11.0%) 70.3% 2.4 (0.9%) 9.3% 33.9 (48.4%) 85.8%

≥1.2-fold risk 59.7 (18.1%) 80.0% 10.0 (3.8%) 23.9% 49.7 (71.1%) 94.6%

The age distribution was obtained from the most recent US Census Bureau 2019 data and information on other risk factors within each age group was obtained from the NHIS. Risk thresholds are evaluated 
in reference to the average risk over all subjects. Supplementary Table 1 details the 95% CIs.
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Fig. 1 | Distribution of the IER for COVID-19 mortality and projections for the proportion of high-risk populations across US communities. Results for the 
general adult population across 477 US cities (left); results for the 65-years-and-older Medicare population across 3,113 US counties (right). a,b, Histograms 
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prevalence and co-occurrences of the underlying risk factors and weights the contribution of the different factors according to their associated risk.
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We have made available a web-based risk calculator (https://
covid19risktools.com/riskcalculator) that allows an individual to 
input information on risk factors and obtain estimates of individu-
alized risk for COVID-19 mortality on both relative and absolute 
risk scales (Extended Data Fig. 10). The relative risk for individuals 
are reported based on the underlying risk score benchmarked with 
respect to a ‘population average risk’ defined as population-weighted 
average risk (IER) across the cities. The calculator returns a numeri-
cal value for relative risk and a color-coded categorization of risk 
into five categories: <1.2 (close to or less than average risk), 1.2–2.0 
(moderately elevated risk), 2.0–5.0 (substantially elevated risk),  
5.0–10.0 (high risk) and >10 (very high risk). Further, for each per-
son, information on risk score is combined with projections available 
from the Ensemble pandemic forecasting models (https://covid-
19forecasthub.org/doc/ensemble/, https://covid19forecasthub.org/ 
doc/ensemble/ and https://github.com/reichlab/covid19-forecast- 
hub#ensemble-model) in their state of residence to report an abso-
lute rate of mortality over a specified period of time. Both types of 
risk are provided with 95% CIs to reflect various sources of uncer-
tainty in the projections. We have also made available interactive 
maps for viewing projections of the number and proportion of 

individuals at different risk categories across US cities, counties and 
states (https://jhucovid19.policymap.com/app).

We developed a COVID-19 mortality risk model for the gen-
eral US population by combining information across multiple data 
sources. We believe that the model is unique in that it can be used 
to project absolute rate of mortality for individuals with different 
risk profiles by combining information on individual-level risk 
factors, as well as on changing dynamics in the epidemic at the 
community-level captured through available forecasting models. 
We applied the model to data available from US national databases 
to identify high-risk cities and counties and estimate the size of 
populations at risk within these communities. Our findings could 
inform policy developments for equitable distribution of early vac-
cines and other scarce preventive resources. Further, the proposed 
methodological framework could aid flexible development and 
updating of other risk models and subsequently use them to per-
form population-level risk projections.

The US National Academy of Sciences, Engineering and Medicine 
(NASEM) has released a comprehensive report on guidelines, and 
underlying principles, for equitable vaccine allocations23. The report 
recommends a four-phase plan with different populations being  
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prioritized on the basis of evidence on risk of infection, severity and/
or mortality following infection, negative societal impact such as 
those on national security and public services and transmission of 
infection to others. Although risk factors such as pre-existing con-
ditions and living in overcrowded settings are considered, it is not 
clear how age and pre-existing conditions are relatively weighted to 
derive priority categories. Further, while the report acknowledges 
the excess burden of COVID-19 for various minority populations 
and areas of high social vulnerability, the development of actual cri-
teria based on these factors has been left to be determined by local 
governments. Thus, we believe that while the NASEM report pro-
vides a strong set of ethical and procedural principles and a broad 
framework for vaccine prioritization, more quantitative analyses are 
needed so that priority categories can be better aligned with under-
lying levels of risk of individuals and populations.

In principle, similar analyses to ours could also be useful for 
developing strategies for the global distribution of vaccines and pre-
ventive therapeutics24. We are working with investigators from the 
Pan American Health Organization to identify risk factor surveil-
lance datasets and provide estimates of the size of high-risk popula-
tions across countries in South America. Development of policies 
for the efficient and impactful distribution of vaccines, however, 
also depends on many other factors, including overall social ben-
efit, ease of implementation and available infrastructures. In par-
ticular, using priority categories based on a simple set of rules, as 
opposed to individual risk calculations, might be desirable for the 
ease of implementation. Risk models, nevertheless, can be useful 
to evaluate effectiveness of any proposed prioritization plan for its 
effectiveness in reducing population burden of serious illness or 
deaths. Further, when data from vaccine trials become available, it 
will be important to explore possible heterogeneity in vaccine effi-
cacy by risk groups, defined by individual and combinations of risk 
factors and appropriately modify allocation strategy to maximize  
population benefit.

Our risk tools and projections can be useful for identifying 
high-risk groups that would benefit most from ‘shielding’ efforts 
until they can be vaccinated. In the beginning of the pandemic, the 
National Health Service of the United Kingdom identified about 1.5 
million individuals to be at extremely high risk due to selected condi-
tions and provided them with assistance for food delivery and med-
ical services25. In California, local and state governments developed 
Project Roomkey (https://covid19.lacounty.gov/project-roomkey/) 
to provide free-of-charge hotel rooms, meals and other services to 
asymptomatic homeless people who are at high risk due to their age 
or/and underlying health conditions. In the future, as businesses, 
schools and higher education institutes reopen, strategies need to be 
in place to identify and shield high-risk individuals. Finally, general 
population risk tools can also help healthy individuals to under-
stand future risk for serious outcomes, not only for themselves, but 
also for family members and friends and thus could better motivate 
them to adhere to standard guidelines for infection prevention, such 
as through handwashing and mask wearing.

A few studies in the past have investigated the proportions  
of ‘high-risk’ individuals for COVID-19-related serious illness or 
mortality in the United Kingdom, the United States and across 
nations globally (https://www.nytimes.com/interactive/2020/05/ 
18/us/coronavirus-underlying-conditions.html?auth=link- 
dismiss-google1tap)25–27. These studies have defined high-risk  
individuals based on the prevalence of one or more risk factors  
without taking into account the relative contribution of these fac-
tors. Further, because of the broad definition used, they estimate 
that a very large fraction of the populations, 20% in the United 
Kingdom and 16–31% globally, are at high risk. By contrast, we have 
defined different risk categories based on an underlying score that 
allows one to assign a more precise magnitude of risk to these cat-
egories. Further, our framework allows evaluation of future absolute 

risk for individuals and communities, incorporating information 
from pandemic forecasting models and thus is uniquely suitable for 
planning vaccination and other prevention efforts across regions 
that may have wide variation in the infection dynamics.

Our study has several limitations. First and foremost, infor-
mation on risk for the majority of risk factors was derived from 
the UK-based OpenSAFELY study15. We have modified the 
model to make it suitable for the US population by incorporating 
population-based information on age- and race-associated rate of 
mortality. Further, we have empirically shown through independent 
validation analyses that the projected risk is well calibrated for the 
general US adult population and correlates strongly with death rates 
across counties in the United States. There is, however, an urgent 
need for individual-level data from large population-based studies, 
akin to the UK OpenSAFELY study, for building and validating gen-
eral population risk models in the US setting.

Another limitation of our study is that we have not incorpo-
rated information associated with front-line occupations that pose 
higher risk of infection (https://www.ons.gov.uk/peoplepopula-
tionandcommunity/healthandsocialcare/causesofdeath/bulletins/
coronaviruscovid19relateddeathsbyoccupationenglandandwales/
deathsregistereduptoandincluding20april2020)28. We have mapped 
individuals in the NHIS study to various high-risk occupation cat-
egories (Supplementary Table 8) and have observed overrepresenta-
tion of minority populations in highest risk categories, such as for 
black and Hispanic individuals in the low-skilled elementary occu-
pation category. Further, a post-publication report from the UK 
OpenSAFELY study (https://doi.org/10.1038/s41586-020-2521-4) 
indicates the presence of interactions between age and other risk 
factors, although required information on all parameters from a 
fully multivariate model is not available yet. We plan to continu-
ally update our risk model, and the corresponding community-level 
risk projections, through incorporation of emerging information 
on risk associated with occupations, age interactions and other  
new risk factors.

We present a comprehensive and flexible framework for assess-
ing general population risk of COVID-19 mortality incorporating 
individual-level risk profiles, population-level risk factor distribu-
tion and time-varying pandemic dynamics. Our risk projections 
for US cities and counties might be useful for guiding strategies for 
equitable allocation of early vaccines and other preventive resources 
in the coming months. Our risk tool and the underlying statistical 
methodologies can be applied to carry out similar analyses interna-
tionally and thus to inform prevention efforts globally.
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ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Definition of COVID-19 mortality risk score. The risk score for an individual is 
defined as a weighted combination of various sociodemographic characteristics 
and predisposing health conditions, with weights defined by the relative magnitude 
of the contribution of these factors to the risk of death due to COVID-19 in the 
adult population. We use two sources of information to build the risk score:  
(1) multivariate-adjusted estimate of risk associated with sex, quintiles for social 
deprivation index (SDI), which is an approximation for the Index of Multiple 
Deprivation (IMD), and 12 pre-existing conditions, including body mass index 
(BMI), smoking status, blood pressure, respiratory disease excluding asthma, 
asthma, chronic heart disease, diabetes, nonhematological cancer, hematological 
cancer, stroke, kidney disease and rheumatoid arthritis, from the recently 
published UK-based OpenSAFELY study15 and (2) death rates associated with 
different age and racial/ethnic groups in the United States published by the  
Centers for Disease Control and Prevention (CDC), after performing external 
covariate adjustment accounting for the correlation of these factors with other risk 
factors in the model (described below).

Estimation of US-specific risk associated with age and racial/ethnic groups 
and external covariate adjustments. We used data made available by the CDC 
on reported COVID-19 deaths as of 6 June 2020, by race, age and state. We 
fitted a Poisson regression to observe death counts across strata defined by 
age, race/ethnicity and state. Specifically, the model takes the following form: 
log Dijk
� 

¼ log Pijk
� 

þ
P

i γiStateiþ
P

j βjRacejþ
P

k δkAgek þ ϵijk
I

, where Dijk 
and Pijk denote the death count and population total in state i, race category j and 
age category k, respectively. The corresponding error term is denoted by ϵijk

I
. The 

model accounts for the underlying population size by an offset term and assumes 
additive effects of age and race/ethnicity categories on log death rate after adjusting 
for states as fixed effects in the model. While fitting the model, we excluded 
the race categories: ‘more than one race’ and ‘Native Hawaiian or Other Pacific 
Islander’. We subsequently performed external covariate analysis to account for 
possible correlation between age and race/ethnicity with other risk factors in the 
model. We used the NHIS dataset as a reference dataset for estimation of joint 
distribution of all risk factors in the US setting. We assumed that the association 
of all risk factors, except age and race, in the fully adjusted model was the same 
across the United Kingdom and United States. We used generalized method of 
moment techniques that we developed earlier29 to obtain estimates for the effects 
of age and race adjusted for other risk factors, with their effects being fixed at those 
available from the fully adjusted model from the UK OpenSAFELY study, based 
on corresponding unadjusted estimates available from CDC data and correlations 
of these risk factors with others as observed in the NHIS dataset. The final set of 
parameters used for the US fully adjusted model is shown in Supplementary  
Table 1. We observed that while adjustment for other risk factors attenuates  
the risk associated with some of the ethnic/racial groups, to a large extent the 
excess risk remains.

Data sources and processing. We utilized a variety of data sources to obtain 
the latest information on the prevalence of demographic variables and health 
conditions across US cities. The resources include American Community Survey 
(ACS) of the US Census Bureau for age, sex and race (2017/2018 Table, 1-year 
estimates), Behavioral Risk Factor Surveillance System (BRFSS) 2017 survey 
of the CDC for various health conditions and smoking, National Health and 
Nutrition Examination Survey (NHANES) for estimating relative proportions of 
certain subcategories of conditions that were not available in BRFSS, US Cancer 
Statistics (2012–2016 incidence rates) maintained by the National Cancer Institute 
(NCI) and the CDC to derive prevalence of hematological and nonhematological 
malignancies and a database available from the Robert Graham Center on SDI 
derived from data available from the ACS (2011–2015, 5-year estimates). In 
addition, we accessed individual-level data from the NHIS of CDC. We extracted 
individual-level data on the risk factors of 22,109 adults from the 2017 NHIS study. 
All the required variables, except SDI, were available for individuals in the NHIS. 
For projections of risk for the United States overall, we applied the most recent age 
distribution from the US Census Bureau 2019 data and information on other risk 
factors within age groups from the NHIS.

We used 2018 data from the Centers for Medicare and Medicaid Services 
(CMS) to obtain the latest information on prevalence of chronic health conditions 
across US counties for the 65-years-and-older Medicare population (the 
<65-year-old Medicare population has missing information on age and thus was 
not included in the analyses). We utilized data for individuals aged 65 years or 
older from 2017–2018 NHANES and 2017 NHIS to estimate relative proportions 
of certain subcategories of health conditions that were not available from the 
CMS. Prevalence of age, race and sex variables for the Medicare population were 
obtained from the ACS.

Definitions of categories of each risk factor, the corresponding data sources and 
weights (βk s) are summarized in the following sections.

Behavioral Risk Factor Surveillance System. We used the BRFSS ‘500 Cities: 
Local Data for Better Health, 2019 release’. This dataset provides information on 
estimates of crude prevalence for covariates related to unhealthy behaviors and 

health outcomes among adult US residents in 2017. As the 2019 release is from 
the 2017 data, which were based on a telephone survey across the states, the total 
sample size (landline and cellphone) varied from 39,510 to 754,950 with a mean 
response rate of 44.9%.

In the UK analysis, BMI in the obese group has three categories: Obese class I 
(30–34.9 kg m−2), Obese class II (35–39.9 kg m−2) and Obese class III (>40 kg m−2). 
From the BRFSS data, we obtained estimates of total prevalence for these three 
obese groups for each city, which is defined as the proportion of respondents aged 
≥18 years who have a BMI ≥ 30.0 kg m−2. We then obtained the relative prevalence 
of Obese I, Obese II and Obese III subcategories from the NHIS 2017 population. 
Assuming that among obese individuals, the relative proportion of the three 
obese categories was the same across the NHIS population and cities, we applied 
the NHIS estimate of relative proportions to city-level information on overall 
prevalence to obtain prevalence estimates for each of the three categories of obesity 
across different cities.

Regarding smoking status, each individual was defined as either nonsmoker, 
former smoker or current smoker. We obtained information on the estimate of 
crude prevalence of smokers (former and current smokers combined) for each city 
from BRFSS data. This was defined as the proportion of respondents aged ≥18 
years who reported having smoked ≥100 cigarettes in their lifetime and currently 
smoke every day or some days. Using the relative proportion of current to former 
smokers from the NHIS, we further allocated smokers into current and former 
smokers and obtained the respective prevalence for each city.

Blood pressure is categorized as either normal or high/diagnosed hypertension, 
where hypertension is defined as systolic BP ≥ 140 mm Hg or diastolic 
BP ≥ 90 mm Hg. We used estimates of crude prevalence for this group, defined as 
the group of respondents aged ≥18 years who reported ever having been told by a 
doctor, nurse or other health professional that they have high blood pressure, from 
the BRFSS data. Estimates of city-level crude prevalence for respiratory disease 
other than asthma, chronic heart disease, stroke/dementia, kidney disease and 
rheumatoid arthritis/lupus/psoriasis were directly obtained from BRFSS data.

Diabetes is quantified based on glycated hemoglobin (Hba1c) measurement 
in mmol mol−1 into three categories: controlled (HbA1c < 58 mmol mol−1), 
uncontrolled (HbA1c ≥ 58 mmol mol−1) and no recent HbA1c measure. From 
BRFSS we obtained the crude prevalence of diabetes, which is the proportion of 
respondents aged ≥18 years who reported ever been told by health professional 
that they have diabetes other than diabetes during pregnancy. We then estimated 
the relative proportion of controlled and uncontrolled diabetes using information 
on HbA1c in the 2016–2017 NHANES and applied this proportion to the 
prevalence of overall diabetes, information on which was available for each 
city from BRFSS, and thus obtained estimates of prevalence of controlled and 
uncontrolled diabetes across cities.

Asthma was grouped by status of recent use of oral corticosteroids (OCSs). 
The BRFSS defines crude prevalence of asthma as the ratio of weighted number of 
respondents who answered ‘yes’ to both of the following questions: “Have you ever 
been told by a doctor, nurse or other health professional that you have asthma?” 
and “Do you still have asthma?” to the weighted number of respondents. The 
OpenSAFELY study reported about 10.69% of patients with asthma were recent 
OCS users in the United Kingdom and we used this same proportion to allocate 
the proportion of patients with asthma for each city to recent OCS users.

For the United States, we have not found available data for city-level crude 
prevalences of several risk factors considered in the UK study15, including 
liver disease, organ transplant, spleen diseases and other neurological and 
immunosuppressive conditions and hence did not take these comorbidities into 
account in the risk score calculation. As these conditions are generally rare,  
we do not expect that exclusion of these variable from the risk score will lead  
to a change in risk coefficients for the other variables.

US Census Bureau. We used the publicly available ACS data to obtain the 
prevalence of demographic variables including age, sex and ethnicity at city level 
(‘census-designated place’).

Distribution of age and sex for each city were obtained from the 2017 table. 
The number of individual interviews were around 2,303,000. The age categories 
available from the census data could be collapsed into age groups 15−<45, 
45−<55, 55−<65, 65−<75, 75−<85 and 85+. Sex was categorized into male  
and female.

The city-wide information on ethnicity was extracted from the latest  
available 2018 data. The number of individual interviews were around 2,300,000. 
Ethnicity included in the analysis has the following categories: white (reference), 
black, Asian, American Indian/Alaskan Native and Hispanic.

Centers for Disease Control and Prevention. We used state-wide COVID-19 
death rates reported till 6 June 2020 to estimate risk of COVID-19 mortality 
associated with age and ethnicity/race categories in the United States. The age 
categories were 15−<45, 45−<55, 55−<65, 65−<75, 75−<85 and 85+ and the race 
categories were white, black, Asian, American Indian/Native Alaskan and Hispanic.

United States Cancer Statistics. The United States Cancer Statistics data are a 
combined cancer data source from the CDC and the NCI that provides statistics 
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on the cancer incidence (newly diagnosed cases) across different cancer sites. We 
used the most recent county-level incidence data available for 5 years combined 
from 2012 to 2016. In the UK analysis, the cancer-related risk factors include 
hematological malignancies and nonhematological cancer, each of which was 
grouped by time since first diagnosis (within the last year, 2−<5 years or  
>5 years). To use this categorization for cancer comorbidities, we carried  
out the following steps.

We first classified the incidence data for various cancer sites into hematological 
cancer and nonhematological cancer for each county. In particular, ‘Hodgkin 
lymphoma’, ‘non-Hodgkin lymphoma’, ‘leukemias’ and ‘myeloma’ were grouped 
into hematological cancer and the rest were grouped into nonhematological cancer. 
For each of the two cancer groups, we adjusted the county-level annual incidence 
rates with corresponding overall annual US survival rates (2017 Leading Cancer 
Cases and Deaths) to obtain county-level prevalence of cancer groups across 
categories based on diagnosis years. We conducted the following steps.

We first obtained 5-year US survival rates for each cancer group using a 
weighted combination of annual US survival rates of cancer sites belonging to that 
specific group. The weights are the proportion of incident cases of cancer sites 
among incident cases of the particular group. We then computed annual death rate 
from the 5-year survival rate.

We show the calculations for hematological cancer as an example. Let us 
denote the obtained annual US death rate for hematological cancer by Dhema. Next, 
we denote the annual incidence rates of the hematological cancer group of the kth 
county by Ihema,k. We calculate the prevalence in each of the following categories:

	(1)	 Diagnosed in <1 year. We adjust 1-year incidence rates using 6-month 
survival rates assuming during that 1-year period, people on average had 
cancer 6 months ago. The prevalence of this category is computed by 
Ihema;k ´ 1� Dhema

2

� �
:

I	(2)	 Diagnosed in ≥1 year and <5 years. We adjust 4-year incidence rates with 
2-year survival rates. Using a similar idea, we calculate the prevalence using 
the formula given by 4Ihema,k × (1 − 2Dhema).

	(3)	 Diagnosed in ≥5 year. We consider the upper bound for time since diagnosis 
to be 20 years and hence, we adjust 15-year incidence rates with 7.5-year 
survival rates in a similar way as for steps (1) and (2).

We repeat the above steps to obtain the cancer prevalence of nonhematological 
cancer in the three categories.

For city-level projections, we assumed the prevalence for different cancer in 
a city to be the same as that of the underlying countries because city-level cancer 
incidence rates were unavailable. The approximation is expected to be reasonable 
for major metropolitan cities that tend to contain the majority of the population for 
the underlying county. However, for smaller cities that represent a small proportion 
of the population for the underlying counties, there is likely to be some bias due 
to the difference in sociodemographic characteristics of individuals living in and 
outside cities.

Robert Graham Center and American Community Survey. One of the upstream 
risk factors considered in the UK analysis was social deprivation, quantified using 
the IMD in quintiles, which is not available in the US setting. It is a geographic 
level measure with higher values indicating greater deprivation. In our study, we 
considered an approximate measure that is available in the United States, the SDI. 
SDI is a composite measure of seven demographic characteristics, developed by 
the Robert Graham Center from the ACS. We obtained the latest available data for 
county-level SDI quintiles in 2015 and for our city-level analysis, we defined the 
SDI quintile for each city as the SDI quintile of the corresponding county to which 
the city belongs to. The major components of IMD and SDI are similar and capture 
income, education, employment and housing condition. The seven factors used 
for calculating the SDI include the percentage population <100% Federal Poverty 
Line, percentage population aged 25 years or more with <12 years of education, 
percentage nonemployed, percentage population living in renter-occupied 
housing units, percentage population living in crowded housing units, percentage 
single-parent households with dependents <18 years and percentage population 
with no car.

National Health Interview Survey. The NHIS data are based on in-person 
interviews conducted by the National Center for Health Statistics. A sample weight 
is assigned to each participant to ensure that the NHIS data are representative of 
civilian noninstitutionalized US population. We used the 2017 NHIS data to obtain 
individual-level information on various risk factors.

Center for Medicare and Medicaid Services Office of Minority Health. The 
CMS data are based on the administrative claims of the Medicare beneficiaries 
obtained from the Chronic Conditions Warehouse. The data provide extensive 
information on county-wise prevalence of chronic and disabling health conditions 
(2018) for the 65-years-and-older population enrolled through the Free-for-Service 
Program. The health conditions include liver disease, cerebral palsy and HIV/
AIDS in addition to the ones in BRFSS. We obtained county-level prevalence 
of race and sex categories for the Medicare population from the US census. We 
excluded 11 counties that had missing data for multiple risk factors. All remaining 

3,113 counties had prevalence data available for hematological/nonhematological 
cancers, but some had missing information on subcategories of cancer prevalence, 
defined by number of years since cancer onset. For the 966 and 196 counties that 
had missing information on subcategories of hematological and nonhematological 
cancers, respectively, we conducted imputation conditional on age groups, 
considering the three subcategories of hematological cancer as an example. We 
first used NHIS data to estimate age-stratified (65–74, 75–84 and 85+ age groups) 
proportions of each subcategory of hematological cancer (diagnosed within 1 year, 
1–5 years ago or >5 years ago) among the 65-years-and-older NHIS individuals 
with a history of hematological cancer. For each county, we then allocated the 
prevalence of age groups and the overall prevalence of hematologic cancer for 
the county to these different subcategories according to their relative proportions 
observed in the NHIS sample.

Statistical models and methods. A framework for integrating population- and 
individual-level risk. Similar to the OpenSAFELY study, we assumed that the risk of 
COVID-19 death at time t for an individual i residing in location l, for example a 
city or a county, can be described by the proportional risk model

λil X; tð Þ ¼ λl tð Þ exp
XK

k¼1

βkXik

 !
¼ λl tð ÞRiðβÞ

where λl(t) denotes the baseline risk for location l due to underlying pandemic 
characteristics, such as social distance measures, population density and mobility 
patterns and Ri βð Þ ¼ exp

PK
k¼1 βkXik

� 

I
 denotes a multiplicative factor associated 

with risk due to various predisposing factors. Here, t refers to calendar time since 
some landmark, such as the day when cumulative death reaches some minimum 
threshold. The average risk of the population at location l can be defined as

λAl ðtÞ ¼ λl tð ÞEl exp
XK

k¼1

βkXik

 !( )
;

where El denotes the expectation (average) with respect to distribution of the 
individual-level risk factors in location l. The above formula allows linking 
individual-level relative risk models to pandemic scenario models and hence 
can produce estimates of absolute risk of individuals, taking into account both 
individual-level risk factors and community-level risk due to pandemic dynamics. 
In particular, there are a variety of pandemic models available to produce estimates 
of population-level risk λAl ðtÞ

I
, for example in the state of residence of an individual, 

over the course of a period of time in the future, which could take into account 
local characteristics, such as reproduction rate, population density and mobility 
patterns and such information can be used to calculate baseline risk λl(t) through 
the equation:

λl tð Þ ¼
λAl ðtÞ

El exp
PK
k¼1

βkXik

   ;

and hence the absolute risk denoted as λil(X,t). Here we consider the Ensemble 
model developed by the Reich Laboratory at the University of Massachusetts 
Amherst (https://covid19forecasthub.org/doc/ensemble/ and https://github.com/
reichlab/covid19-forecast-hub#ensemble-model)30, which produces projection of 
deaths by taking the arithmetic average of the projections from up to 61 individual 
forecasting models. The list and detailed descriptions of the individual forecasting 
models, including assumptions about changing dynamics in the epidemic, are 
provided at the Reich Laboratory COVID-19 Forecast Hub (https://github.com/
reichlab/covid19-forecast-hub#ensemble-model). We download state-level 
projections and corresponding 95% CIs on a weekly basis.

Approximate characterization for the distribution of risk score (risk on log scale). 
Recall that we defined the risk score of COVID-19 death for an individual 
i as RSi ¼

PK
k¼1 βkXik

I
. We observed that the distribution of the calculated 

individual-level risk score for the NHIS population could be approximated by 
a mixture-normal distribution with three components that correspond to the 
18–44-year age group, 45–74-year age group and 75+ age group, respectively 
(Extended Data Fig. 2). Under the mixture-normal approximation, we can 
characterize the distribution of risk scores for each location by evaluating its mean 
and variance within each of the three age groups:

El;a RSf g ¼
XK

k¼1

βkEl;afXkg; ð1Þ

Vl;a RSf g ¼
XK

k¼1

β2kVarl;afXkg þ
XK

k¼1

XK

k0¼1

βkβk0Covl;a Xk;Xk0ð Þ; ð2Þ

where a is the indicator for age group (a = 1: aged 18–44 years, a = 2:  
aged 45–74 years, a = 3: aged 75+ years), El,a and Vl,a denote the expectation  
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and variance of the risk score with respect to distribution of the risk factors among 
age group a in location l.

In the following paragraphs, we will focus on the discussion of approximating 
characteristics of the risk score distribution for the age 15+ years general 
population in the 477 cities by the mixture-normal distribution. For the 
65-years-and-older Medicare population in each county, we observed that the 
distribution of risk score could be adequately approximated by a single normal 
distribution as shown by the NHIS 65-years-and-older population (Extended Data 
Fig. 2). The corresponding calculations were thus performed based on a single 
normal distribution.

For simplicity, we denote the mean and variance of the risk score within age 
group a in location l as ðμl;a ; σ2l;aÞ

I
, a = 1,2,3. In this particular analysis, the Xks 

denote the dummy variables that indicate the levels of categorical risk factors and 
thus the mean and variance of the risk score can be characterized by the estimates 
of prevalence of the individual risk factor categories and joint prevalence of pairs 
of categorical variables. Briefly, for a location l, within each age group, we first 
obtained the age-stratified prevalence of each risk factor category, then calculated 
the co-prevalence of each pair of categorical variables using the corresponding 
odds ratio estimated from NHIS individual-level data.

We first discuss how to calculate the prevalence of each categorical variable 
within each age group in a location using information on the overall prevalence 
for that location and relationship between age and that variable estimated from 
NHIS data. We denote the age group by an indicator variable X1 (X1 = 1 denotes the 
18–44 age group and 0 denotes the 45+ age group), and the categorical variable by 
X2. In the scenarios where X2 has more than two categories, we re-classified X2 into 
two categories, one for which we computed the prevalence and the other where we 
collapsed the rest. We estimated the odds ratio, a measure of association, between 
X1 and X2 using NHIS data after accounting for sampling weights. The odds ratio 
is defined as (P(X1 = 1, X2 = 1)P(X1 = 0, X2 = 0)) / (P(X1 = 1,X2 = 0)P(X1 = 0,X2 = 1)) 
and, under a logistic regression framework with X1 being the outcome and X2 being 
the exposure, it is equal to eθ, where θ is the regression parameter associated with 
X2. Thus, we fit a logistic regression model with X1 as the outcome and X2 as the 
exposure and estimate θ by taking into account the individual weights θ in NHIS 
data. We assumed that the odds ratio estimates obtained from the NHIS could 
be generalized to underlying populations of cities. We plugged in the odds ratio 
estimate and the city-specific marginal prevalence of the two groups in equation 
(3), described below, to derive the proportions of cells in a 2 × 2 contingency 
table defined by Y and X. We then evaluated age-group-specific prevalence of the 
required category by taking the ratio of the corresponding cell proportion and 
city-specific marginal prevalence of corresponding age groups.

Obtaining joint prevalence of two factors from marginal prevalence and odds 
ratios. Suppose that we have two binary variables for two different risk factors, 
which, for city l, are denoted as Xl

1
I

 and Xl
2
I

 with marginal prevalence pl1
I

 and pl2
I

, 
respectively and odds ratio r ¼ pl11p

l
00=ðpl01pl10Þ

I
, which is estimated based on NHIS 

individual-level data and is assumed to be constant across all cities. We will use 
these notations without l for simplicity. The 2 × 2 table for the city-specific X1  
and X2 is

X1 = 1 X1 = 0 Total

X2 = 1 p11 p10 p2

X2 = 0 p01 p00 1−p2

Total p1 1−p1 1

Given p1, p2 and r, we have the following equations:

p11 þ p10 ¼ p2;
p11 þ p01 ¼ p1;
p11p00
p01p10

¼ r;
p11 þ p10 þ p01 þ p00 ¼ 1:

It is easy to see that p00 = 1 − p1 − p2 + p11. We then have

p11 1�p1�p2þp11ð Þ
p1�p11ð Þ p2�p11ð Þ ¼ r

) 1� rð Þp211 þ 1þ r � 1ð Þ p1 þ p2ð Þ½ p11 � rp1p2 ¼ 0:

We define a = 1 − r, b = 1 + (r − 1)(p1 + p2) and c = − rp1p2, then the solution is 
given by the quadratic formula:

p11 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
: ð3Þ

After obtaining the marginal prevalence of the variables and their 
co-prevalence, p11, we can then estimate the expectation, variance of the risk factors 
and the covariance across them using the following formulas

E Xið Þ ¼ pi; i ¼ 1; 2;
Var Xið Þ ¼ pi 1� pið Þ; i ¼ 1; 2;
Cov X1;X2ð Þ ¼ p11 � p1p2:

For the risk factors that have multiple categories, such as hematological cancer 
status, we denote dummy variables for the jth and kth categories as Xj and Xk, 
respectively. Given marginal probabilities pj and pk, we can calculate the expectation 
and variance of Xj and Xk based on the properties of multinomial distribution:

E Xið Þ ¼ pi i ¼ j; k;
Var Xið Þ ¼ pi 1� pið Þ; i ¼ j; k;
Cov Xj;Xk
� �

¼ �pjpk:

We apply these formulas repeatedly to calculate the age-stratified individual and 
joint prevalence of different risk factors and thus calculate the mean and variance 
for the risk score for each of the three components of the normal mixture model.

The IER of a city/county. We define the quantity Rl βð Þ ¼ El exp
PK

k¼1 βkXik
�  

I
 as 

an IER for the population associated with the underlying risk factor distribution 
in location l, and present the scaled version of IER as Rl βð Þ=�R

I
, where �R denotes 

the weighted average of Rl βð Þ
I

 across cities/counties with population sizes as 
the weights, to rank cities/counties for their excess risk due to the underlying 
distribution of risk factors in the populations. As the individual-level data from 
each location are unavailable, we estimated IER using the available city- and 
county-level data for the prevalence of Xks, and individual-level data from a 
representative sample of the US population from the NHIS. Taking city-level 
analysis as an example, we first obtained the mean and variance of individual-level 
risk score (RS) within each age group a (μl,a = El,a{RS} and σ2l;a ¼ Vl;a RSf g

I
, 

respectively, a = 1,2,3). Note that IER can be written as IERlðβÞ ¼ El exp RSð Þf g=�R
I

. 
Given the mixture-normal assumption for RS, we have

El exp RSð Þf g ¼
X3

a¼1

pl;a exp μl;a þ 0:5σ2l;a

 

where pl,a denotes the prevalence of age group a at location l, which is available 
from ACS. We defined an average risk of the US population �Rð Þ

I
 based on a 

weighted average of IER across 477 cities with weights proportional to population 
size. For the county-level analysis of the 65-years-and-older Medicare population, 
similar calculations were performed based on a single normal distribution for 
underlying risk scores.

Model validation. We correlated IER with recent death rates across US cities to 
validate the underlying model.

Specifically, we conducted independent validation analyses using county-level 
mortality information from the CDC between 7 June and 1 October 2020, which 
did not contribute to the model development. In one analysis, for each of the 259 
counties that contained the 477 studied cities, we calculated a weighted IER with 
each city being weighted by its population size. We then examined how strongly 
the county-level IER predicted the underlying death rates using two approaches. 
First, we fitted a negative binomial regression of the death counts on log(IER), 
where the underlying population sizes were used as offset terms for modeling rates 
and residual heterogeneity in the model was accounted for using an underlying 
Poisson-Gamma random effects model. If the underlying individual-level risk 
model is correctly specified, then in this group-level model, one would expect 
the slope of log(IER) to be close to 1.0. We further modeled the log of death rates 
across the counties as a linear function of log(IER) and used weighted least squares 
to estimate a measure of explained variance (R2) of log(death rate) associated with 
log(IER). As a benchmark, we estimated similar measures for two other likely 
predictors, log of population density (https://covid19.census.gov/datasets/21843f
238cbb46b08615fc53e19e0daf_1?geometry=-168.434%2C28.795%2C169.066%2
C67.148&selectedAttribute=B01001_calc_PopDensity) and log of 3-weeks-before 
infection rate (https://github.com/CSSEGISandData/COVID-19). The 95% CIs 
for R2 were calculated based on 1,000 bootstrap replicates of county-level data. 
We also conducted a conditional analysis by incorporating region indicators for 
the Northeast, Midwest, South and West as additional covariates in the regression 
to account for major regional differences in pandemic dynamics between regions 
(https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf).

Additionally, we conducted a validation analysis using a much expanded set 
of 2,999 counties, but with the IER derived based on the underlying Medicare 
population aged 65 and older, which was expected to lead to the majority of 
the observed deaths, as information on risk factor prevalence for the general 
population is not available across US counties. For each county, we derived 
a conditional IER based on the risk-factor prevalence for the underlying 
65-years-and-older population and then multiplied it by the proportion of 
population who are 65 years and older in that county to capture its associated 
risk. All counties with zero death or zero infection over the 2-week period were 
excluded from the analyses. All analyses were performed using information on 
deaths over a moving window of 2-week periods for the detection of potential 
temporal effects. In both analyses, we observed that the relationship between IER 
and death rates were fairly linear throughout the range of risk.

Further, we use the above calculations to project expected discriminatory 
performance of the underlying risk model for the US population. We calculated 
AUC, which is the probability that risk score value is higher for a randomly 
selected case compared to that for a randomly selected control, based on the 
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observed distribution of risk scores in the NHIS sample (treated as controls) and 
the projected distribution of risk scores among cases (D = 1).

Calculating the proportion and size of the vulnerable population within a city/county. 
We further examined the distribution of Ri(β) across individuals within a location 
to identify the size of the underlying most ‘vulnerable’ populations. For these 
evaluations, ideally one would require individual-level data for a representative 
sample of individuals from each location. However, in the absence of such data, we 
developed a framework to approximate the distributions using city/county-specific 
information on prevalence and information on the co-occurrence of these factors, 
captured through the underlying odds ratio parameters, from the NHIS (Extended 
Data Fig. 2 and details below).

We used �R, the average risk for the US population associated with these risk 
factors, as a reference risk. The proportion of individuals who are at k-fold or 
higher risk compared to the reference risk can be defined as

Pr Ril>k ´ �Rð Þ ¼ Pr logðRilÞ> log kð Þ þ logð�RÞð Þ:

We first discuss calculation of the proportion and number of high-risk 
individuals among the general 18-years-and-older population in each of the 
477 US cities. As mentioned previously, the distribution of the risk scores of the 
18-years-and-older US population shows a mixture-normal pattern due to the 
substantial difference in risk of mortality across different age groups. As shown 
in Extended Data Fig. 2, the distribution of the risk scores of the general adult 
population in NHIS population can be approximated by a mixture of three normal 
distributions that correspond to the 18–44 age group, 45–74 age group and  
75+ age group, respectively. We therefore assumed that log(Ril), the risk score of an 
individual i in city l, follows a mixture-normal distribution of three components, 
Nðμl;a ; σ2l;aÞ
I

 with weight pl,a being to the prevalence of age group a, a = 1,2,3,  
in city l. The proportion of the population in city l that exceed k-fold of the 
reference risk is then

Pr Ril>k ´ �Rð Þ ¼ 1� CDFNðμl;a ;σ2l;a ;pl;aÞ;a¼1;2;3 log kf g þ log �Rf gð Þ;
I

 where 
CDFNðμl;a ;σ2l;a ;pl;aÞ;a¼1;2;3

I

 denotes the cumulative density function (CDF) of the 
assumed mixture-normal distribution for the individual-level risk score in city l. 
Finally, the actual size of the vulnerable population that exceed k-fold of average 
risk in city l is estimated by multiplying the proportion of vulnerable population by 
total population size Ml, that is Ml 1� CDFNðμl;a ;σ2l;a ;pl;aÞ;a¼1;2;3 log kf g þ log �Rf gð Þ

� �
:

IFor the 65-years-and-older Medicare population, we expected that the risk 
score Rils has an approximately normal distribution, which was validated using 
the NHIS 65-years-and-older individuals (Extended Data Fig. 2). Under the 
normal assumption, Ril  Nðμl ; σ2l Þ

I
, we estimated the mean μl and variance σ2l

I
 of 

the risk score Ril using previously described methods and the proportion of the 
65-years-and-older Medicare population in location l that exceed k-fold of the 
reference risk is

Pr Ril>k ´ �Rð Þ ¼ 1�Φμl ;σ
2
l
log kf g þ log �Rf gð Þ;

where Φμ;σ2 ðÞ
I

 denotes the CDF of N(μ,σ)2.

Expected proportion of deaths at high risk within a location. As validation analysis 
show that the underlying model is well calibrated for the US population, the 
distribution of risk score among individuals who are expected to die can be derived 
based on that for the general population and the underlying risk model. Thus, we 
make a series of projections for the proportion of total deaths that are expected to 
occur within various risk categories based on the model. Specifically, we calculate 
the proportion of deaths expected to occur at or higher than the k-fold risk 
threshold as

Pr Ril>k ´ �RjDil ¼ 1ð Þ ¼ Pr Dil ¼ 1;Ril>k´ �Rð Þ
Pr Dil ¼ 1;Ril>k ´ �Rð Þ þ Pr Dil ¼ 1;Ril≤k ´ �Rð Þ ;

where Pr(Dil = 1|Ril), the probability of death given risk Ril, is proportional to Ril.
For the city-level analysis of the general 18-years-and-older population in the 

477 US cities, we have

Pr Dil ¼ 1;Ril>k ´ �Rð Þ ¼ R

Ril >k ´ �R
Pr Dil ¼ 1jRilð Þf ðRilÞdRil

¼
P3
j¼1

R1

logðk ´ �RÞ
Pr Dil ¼ 1jRSilð Þf RSil jail ¼ jð ÞdRSil

( )
´Prðail ¼ jÞ

/P
3

j¼1
pl;j

R1

log k´ �Rð Þ
eRSil e

�
RSil�μl;jð Þ2

2σ2
l;j dRSil

/
P3
j¼1

pl;je
μ2l;jþ0:5σ2l;j 1�Φμl;jþσ2l;j ;σ

2
l;j
log k ´ �Rð Þð Þ

h i
;

similarly,

Pr Dil ¼ 1;Ril≤k ´ �Rð Þ /
X3

j¼1

pl;je
μ2l;jþ0:5σ2l;jΦμl;jþσ2l;j ;σ

2
l;j
log k ´ �Rð Þð Þ;

where RSil = log(Ril), pl,j denotes the prevalence of age group j, ail is the indicator of 
age group (ail = 1: age 15–44, ail = 2: age 45–74, ail = 3: age 75+). The proportion of 
deaths in location l that exceed k-fold of the reference risk is then

Pr Ril>k´ �RjDil ¼ 1ð Þ

¼
P3

j¼1
pl;j e

μ2
l;j
þ0:5σ2

l;j 1�Φμl;jþσ2
l;j
;σ2
l;j

log k ´ �Rð Þð Þ
h i

P3

j¼1
pl;j e

μ2
l;j
þ0:5σ2

l;j 1�Φμl;jþσ2
l;j
;σ2
l;j

log k ´ �Rð Þð Þ
h i

þ
P3

j¼1
pl;j e

μ2
l;j
þ0:5σ2

l;jΦμl;jþσ2
l;j
;σ2
l;j

log k´ �Rð Þð Þ

For the county-level analysis of the 65-years-and-older Medicare population in 
the 3,113 US counties, we have

Pr Ril>k ´ �RjDil ¼ 1ð Þ / R

Ril >k ´ �R
Pr Dil ¼ 1jRilð Þf ðRilÞdRil

¼ R1

logðk ´ �RÞ
Pr Dil ¼ 1jRSilð Þf RSilð ÞdRSil

¼ 1�Φμlþσ2l ;σ
2
l
log k ´ �Rð Þð Þ;

where μl and σ2l
I

 are the mean and variance of the risk score RSil in county l.

Uncertainty in community-level projections. We provided estimates of uncertainties 
for community-level projections, taking into account various sources of 
uncertainties in the estimates of risk parameters and random variations associated 
with various survey datasets (such as BRFSS, NHANES, NHIS). We created 
bootstrap samples for all inputs that went into the risk calculations, including 
parameter values, risk factor prevalence and survey datasets and carried out all 
the calculations on these replicated datasets as we did for our original analyses. 
We report 95% empirical CI for the final risk estimate for all community-level 
projections based on their underlying bootstrap distributions.

We first simulated 1,000 bootstrap replicates for the set of coefficients for 
the UK OpenSAFELY model by simulating them from a multivariate normal 
distribution with mean and dispersion matrix fixed at the set of original parameter 
estimates and underlying variance–covariance matrix (obtained by personal 
communication), respectively. We created 1,000 bootstrap replicates for the NHIS 
and NHANES datasets by sampling subjects with replacement. For the BRFSS study, 
for which individual-level data were not available, we obtained bootstrap replicates 
for the estimates of the risk factor prevalence through simulations. Let Xil denote 
the indicator variable for a risk factor category for individual i in location l. We 
simulated Xil from Ber(nl,pl), where pl denotes the original estimate of risk-factor 
prevalence in location l reported in BRFSS and nl denote the sample size in BRFSS 
for location l. As the city-wise sample sizes were not reported in BRFSS, we used the 
total sample size across cities within a state and distributed it to the underlying cities 
proportionately to their population sizes. We did not consider uncertainty in the 
estimates associated with the risk factors: sex, ethnicity and age, as the information 
came from the entire US population collected through census data.

Uncertainty in individual-level risk estimation. We also provided estimates of 
uncertainties for individual-level projections. For projections of individual-level 
relative risk, we took into account uncertainty in the estimates of risk 
parameters. For the projections of individual-level absolute risk, we further 
incorporated uncertainties associated with state-level projections across up to 
61 different forecasting models included in the Ensemble estimator (https://
covid19forecasthub.org/doc/ensemble/, https://github.com/reichlab/covid
19-forecast-hub#ensemble-model)30.

Denoting X as the vector of risk factors of an individual, β̂ as the vector  
of the estimated fully adjusted log hazard ratios of the risk factors and 
Rðβ̂Þ ¼ PL

l¼1 wlRlðβ̂Þ
� 

=
PL

l¼1 wl
� 

I
 the weighted average of the estimated 

mean risk in each city (that is Rlðβ̂Þ
I

), with weight wl denoting the population  
size of city l, the estimated relative risk of the individual is reported as

cRR ¼ eX
T β̂

Rðβ̂Þ
:

The sources of uncertainty in cRR
I

 include the variation in β̂, Rðβ̂Þ
I

 and 
the covariance of β̂ and Rðβ̂Þ

I
. We quantified these sources of uncertainty by 

constructing a 95% bootstrap CI for cRR
I

. Specifically, we have

Var log cRR
 n o

¼ Var XT
i β̂ � log R β̂

�   

¼ XTCovðβ̂ÞX þ Var log R β̂
�   

� 2XTCov β̂; log R β̂
�   

;

where Covðβ̂Þ;Var log R β̂
� �� �� �

I
 and Cov β̂; log R β̂

� �� �� �

I
 are estimated from 1,000 

bootstrap samples of β̂, city-level BRFSS risk factor prevalence and NHIS and 
NHANES datasets (described above).

The 95% CI of an individual’s relative risk is computed as

elog
bRR�z1�α

2
´ sd log bRR

��  
; elog

bRRþz1�α
2
´ sd log bRR

��   
;

where α = 0.05 and z1�α
2

I
 denotes the 1� α

2

� �

I
 quantile of the standard normal 

distribution.
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Recall that the estimate of an individual’s absolute risk is calculated by 
combining the estimated relative risk that quantifies the risk due to a set of 
predisposing factors with the estimated baseline risk in the individual’s state of 
residence that quantifies the risk due to the underlying pandemic characteristics 
over time:

λ̂s X; tð Þ ¼ λ̂s tð ÞeX
T β̂

¼ λ̂As tð Þ
Rs β̂ð Þ e

XT β̂;

where λ̂As tð Þ
I

 and Rs β̂
� �

I
 denote the projected mortality rate and the average 

relative risk of the population, respectively, in state s (the individual’s 
state of residence). Taking log on both sides of the above equation, we get 
log λ̂s X; tð Þ ¼ log λ̂As tð Þ � log Rs β̂

� �
þ XT β̂:

I
 We assume that log λ̂s X; tð Þ

I
 is 

approximately normally distributed and derive its variability as

Var log λ̂s X; tð Þ
� �

¼ Var log λ̂As tð Þ � log Rs β̂
� �

þ XT β̂
� �

¼ Var log λ̂As tð Þ
� �

þ Var log Rs β̂
� �� �

þ VarðXT β̂Þ
�2Cov log λ̂As tð Þ; log Rs β̂

� �� �

�2Cov XT β̂; log Rs β̂
� �� �� �

þ 2Cov log λ̂As tð Þ;XT β̂
� �

¼ Var log Rs β̂
� �� �

þ Var log λ̂As tð Þ
� �

þ XTCovðβ̂ÞX
2XTCov β̂; log Rs β̂

� �� �� �
:

The other two covariance terms are zero as λ̂As tð Þ
I

 and β̂ are independent. Here, 
Cov β̂

� �

I
Var log Rs β̂

� �� �

I
 and Cov β̂; log Rs β̂

� �� ��

I
 are estimated from 1,000 bootstrap 

samples as described above. We estimate Var log λ̂As tð Þ
� �

I
 based on the variation 

of death reported across the 58 models included in the Ensemble estimator30. 
Specifically, based on the reported CI ([MRL,MRU]) and normally, we calculate

Var log λ̂As tð Þ
 

¼ log MRUð Þ � log MRLð Þ
2 z1�α

2

 

8
<
:

9
=
;

2

:

The 100(1 − α)% CI of an individual’s absolute risk is then finally computed as

elog λ̂s X;tð Þ�z1�α
2
´ sd log λ̂s X;tð Þð Þ; elog λ̂s X;tð Þþz1�α

2
´ sd log λ̂s X;tð Þð Þh i

:

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Interactive maps for viewing city-, county-, state- and national-level risk 
projections in the United States (with 95% CIs provided) and the web-based tool 
for the individualized risk calculator are available at http://covid19risktools.com/.
All data used in the manuscript are publicly available, including NHIS 2017 Data 
Release (https://www.cdc.gov/nchs/nhis/nhis_2017_data_release.htm), deaths 
associated with different age and racial/ethnic groups in the United States (as of 
6 June 2020, https://data.cdc.gov/NCHS/Deaths-involving-coronavirus-disease-
2019-COVID-19/ks3g-spdg), 2017 Leading Cancer Cases and Deaths (https://
gis.cdc.gov/Cancer/USCS/DataViz.html), US Census Bureau ACS 1-year 
estimates for age, gender and race, 2017/2018 table (https://www.census.gov/
programs-surveys/acs), US Census Bureau ACS 2017 age–sex table (https://data.
census.gov/cedsci/table?q=Age%20and%20Sex&hidePreview=true&t=Age%20
and%20Sex&tid=ACSST1Y2017.S0101&vintage=2018&y=2017), 2010–2019 
state population by characteristics (https://www.census.gov/data/tables/
time-series/demo/popest/2010s-state-detail.html), 2010–2019 county population 

by characteristics (https://www.census.gov/data/tables/time-series/demo/
popest/2010s-counties-detail.html), US Census Bureau ACS sample size (https://
www.census.gov/acs/www/methodology/sample-size-and-data-quality/
sample-size/), 2018 city-wide information on Hispanic or Latino origin by race 
(https://data.census.gov/cedsci/table?q=hispanic&hidePreview=true&tid=ACSD
T1Y2018.B03002&t=Hispanic%20or%20Latino&vintage=2018), 500 Cities: Local 
Data for Better Health, 2019 release, BRFSS, CDC (https://chronicdata.cdc.gov/5
00-Cities/500-Cities-Local-Data-for-Better-Health-2019-relea/6vp6-wxuq), BRFSS 
2017 Summary Data Quality Report (https://www.cdc.gov/brfss/annual_data/2017/
pdf/2017-sdqr-508.pdf) and 2017–2018 NHANES (https://wwwn.cdc.gov/nchs/
nhanes/continuousnhanes/default.aspx?BeginYear=2017). All data used in the 
analyses can be accessed at https://github.com/nchatterjeelab/COVID19Risk/tree/
master/data.

Code availability
The R codes for data management and analyses in this article can be accessed at 
https://github.com/nchatterjeelab/COVID19Risk.
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Extended Data Fig. 1 | Comparison of COVID-19 mortality risk associated with various age and race and/or ethnic groups between the US and the UK. 
a, Relative risk of age groups in the UK versus that of in the US. b, Relative risk of ethnic groups in the UK versus that of in the US. For UK, the relative risk 
is from age-sex adjusted model in Table 1 of the UK OpenSAFELY study. For US, the relative risk associated with race and/or ethnic groups is adjusted for 
both age and state whereas the relative risk associated with age is adjusted for state using Poisson regression model fitted to the CDC state-level death 
count data. The UK estimates are based on study population of 17,278,392 adults with 10,926 COVID-19-related deaths whereas the estimates for US are 
based on the whole population across 51 states with a total of 99,866 deaths reported prior to 7 June 2020.
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Extended Data Fig. 2 | Distribution of risk score in NHIS population. Results are shown separately for (a) the 18 years and older population 
(N=22,901), and (b) the 65 years and older population (N=5,875). Empirical distributions are compared with those based on mixture-normal or normal 
approximations. The risk scores in both sub-figures are calculated based on age, gender, ethnicity and 12 different health conditions, but not social 
deprivation index (SDI) due to the absence of the relevant data in NHIS. The risk score is centered using a reference value that corresponds to the average 
risk across the individuals in NHIS. NHIS: National Health Interview Survey.
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Extended Data Fig. 3 | Distribution of risk factors in the general NHIS population and among individuals in different risk groups. The risk score is 
calculated based on age, sex, race/ethnicity, body mass index (BMI), smoking status and 12 different health conditions. Social Deprivation Index (SDI) 
was not available in NHIS and was excluded in this analysis. The risk thresholds are defined with respect to the average risk of the NHIS population. NHIS: 
National Health Interview Survey.
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Extended Data Fig. 4 | Distribution of risk in the general NHIS population and among individuals in different risk groups (continued). The risk scores 
were calculated based on age, sex, race/ethnicity, body mass index (BMI), smoking status and 12 different health conditions. Social Deprivation Index 
(SDI) was not available in NHIS and was excluded in this analysis. The risk thresholds are defined with respect to the average risk of the NHIS population. 
NHIS: National Health Interview Survey.
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Extended Data Fig. 5 | Distribution of risk factors in the 65 years and older NHIS population and among individuals in different risk groups. The risk 
scores were calculated based on age, sex, race/ethnicity, body mass index (BMI), smoking status and 12 different health conditions. Social Deprivation 
Index (SDI) was not available in NHIS and was excluded in this analysis. The risk thresholds are defined with respect to the average risk of the NHIS 
population. NHIS: National Health Interview Survey.
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Extended Data Fig. 6 | Distribution of risk factors in the 65 years and older NHIS population and among individuals in different risk groups (continued). 
The risk scores were calculated based on age, sex, race/ethnicity, body mass index (BMI), smoking status and 12 different health conditions. Social 
Deprivation Index (SDI) was not available in NHIS and was excluded in this analysis. The risk thresholds are defined with respect to the average risk of the 
NHIS population. NHIS: National Health Interview Survey.
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Extended Data Fig. 7 | Projections for high-risk for the 65 years and older Medicare population across N=51 US states. a, Histogram of the proportion 
of population exceeding the 5-fold risk threshold across states. b, Scatter plot of the proportion of population exceeding the fivefold risk threshold against 
the proportion of deaths among the population that are expected to occur within the ≥fivefold risk group. Results for additional risk thresholds and the 
corresponding 95% CIs are provided in Supplementary Table 5.
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Extended Data Fig. 8 | Scatter plots of the log of death rate against log(IER). a, IER derived for the 18 years and older population is plotted against 
observed death rates on the log scale across N=259 US counties representing the 477 cities. b, IER derived for the 65 years and older Medicare population 
is plotted against observed death rates across N=2,999 US counties. The orange curve is fitted by loess regression. IER: Index of Excess Risk.
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Extended Data Fig. 9 | Relationship between R2 for predicting group-level risk and AUC for individual-level prediction observed on simulated data 
sets. We simulated individual-level outcome and risk-factor data for approximately 4.1 million individuals based on the risk model, and randomly divided 
the population into 100 risk groups. We varied the coefficient of the risk-score in the model to achieve different strengths of association between the 
risk-score and the outcome. The dark red colored plot corresponds to a value of R2=0.154, which is the average value of performance of the model 
predicting death rates across 259 counties representing the 477 studied cities over two-week windows between 7 June 2020 and 1 October 2020, and 
AUC=0.895.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


LettersNATURE MEDICInE

Extended Data Fig. 10 | Risk calculator workflow. a, General schema of the risk calculator which inputs information on socio-demographic, behavioural, 
and predisposing conditions of an individual to estimate their relative risk compared to the average risk of the US adult population (aged 18 years and 
older). Based on the projected death rate in the state where the individual resides in, the tool evaluates the individual’s absolute risk of death due to 
COVID-19 during future time frame. b, Output from the risk calculator for two hypothetical profiles.
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