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Summary 23 

The SARS-CoV-2 pandemic poses an unprecedented public health crisis. Evidence 24 

suggests that SARS-CoV-2 infection causes dysregulation of the immune system. 25 

However, the unique signature of early immune responses remains elusive. We 26 

characterized the transcriptome of rhesus macaques and mice infected with 27 

SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2 infected animal 28 

models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of 29 

S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in 30 

SARS-CoV-2 infected mice. Remarkably, Paquinimod treatment resulted in almost 100% 31 

survival in a lethal model of mouse coronavirus infection using the mouse hepatitis 32 

virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological 33 

damage and onset of COVID-19 were dramatically induced by coronavirus infection. 34 

Paquinimod treatment could reduce these neutrophils and regain antiviral responses, 35 

unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of 36 

COVID-19, highlighting new opportunities for therapeutic intervention. 37 
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Introduction 42 

The ongoing Coronavirus Disease 2019 (COVID-19) caused by severe acute 43 

respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in unprecedented 44 

public health crises, requiring a deep understanding of the pathogenesis and 45 

developments of effective COVID-19 therapeutics (Wu et al., 2020b; Zhu et al., 2020). 46 

Innate immunity is an important arm of the mammalian immune system, which serves 47 

as the first line of host defense against pathogens. Most of the cells of the body harbor 48 

the protective machinery of the innate immunity and can recognize foreign invading 49 

viruses (Akira et al., 2006). The innate immune system recognizes microorganisms via 50 

the pattern-recognition receptors (PRRs) and upon detection of invasion by pathogens, 51 

PRRs activate downstream signaling pathways leading to the expression of various 52 

cytokines and immune-related genes for clearing the pathogens including bacteria, 53 

viruses and others (Akira et al., 2006). With regards to SARS-CoV-2 infection, an 54 

overaggressive immune response has been noted which causes immunopathology 55 

(Huang et al., 2020; Zhang et al., 2020). In addition, T cell exhaustion or dysfunction 56 

has also been observed (Diao et al., 2020; Zheng et al., 2020a; Zheng et al., 2020b). 57 

Additional studies suggest that there may be a unique immune response evoked by 58 

coronaviruses (Blanco-Melo et al., 2020). However, the nature of these responses 59 

elicited by the virus remains poorly understood.  60 

Accumulating evidences suggest that the neutrophil count is significantly increased 61 

in COVID-19 patients with severe symptoms (Kuri-Cervantes et al., 2020; Liao et al., 62 

2020; Tan et al., 2020; Wu et al., 2020a). It is believed that neutrophils migrate from the 63 

circulating blood to infected tissues in response to inflammatory stimuli, where they 64 

protect the host by phagocytizing, killing and digesting bacterial and fungal pathogens 65 

(Nauseef and Borregaard, 2014; Nicolas-Avila et al., 2017). The role of such a response 66 

in host defense against viral infection has not been clearly characterized. A recent study 67 

observed a new subpopulation of neutrophils in COVID-19 patients, which have been 68 

named developing neutrophils because they lack canonical neutrophil markers like 69 
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CXCR2 and FCGR3B (Wilk et al., 2020). However, it is still not clear how this type of 70 

neutrophil is induced. Moreover, the precise function of these cells is also unknown.   71 

Alarmins are endogenous, chemotactic and immune activating proteins/peptides that 72 

are released as a result of cell injury or death, degranulation, or in response to infection. 73 

They relay intercellular defense signals by interacting with pattern-recognition 74 

receptors (PRRs) to activate immune cells in host defense (Oppenheim and Yang, 2005; 75 

Yang et al., 2017). Currently, the major categories of alarmins include defensins, 76 

high-mobility group (HMG) proteins, interleukins (ILs), heat shock proteins (HSPs), 77 

S100 proteins, uric acid, hepatoma derived growth factor (HDGF), eosinophil-derived 78 

neurotoxin (EDN), and cathelin-related antimicrobial peptide (CRAMP) (Giri et al., 79 

2016; Yang et al., 2017). In response to microbial infection, alarmins are released to 80 

initiate and amplify innate/inflammatory immune responses, which involve the 81 

activation of resident leukocytes (e.g. macrophages, dendritic cells, mast cells, etc.), 82 

production of inflammatory mediators (cytokines, chemokine and lipid metabolites), 83 

recruitment of neutrophils and monocytes/macrophages for the purpose of eliminating 84 

invading microorganisms and clearing injured tissues (Bianchi, 2007; Chen and Nunez, 85 

2010; Nathan, 2002; Oppenheim and Yang, 2005; Yang et al., 2017). However, 86 

uncontrolled production of alarmins is harmful or even fatal to the host in some cases. 87 

HMGB1 protein acts as a late mediator of lethal systemic inflammation in sepsis (Wang 88 

et al., 2004). Therefore, anti-HMGB1 therapeutics have shown to be beneficial in 89 

experimental models of sepsis. 90 

S100A8 and S100A9, members of the S100 group of proteins, make up 91 

approximately 45% of the cytoplasmic proteins present in neutrophils. They are also 92 

referred to as MRP8 and MRP14, respectively. Under physiological conditions, 93 

massive levels of S100A8 and S100A9 are stored in neutrophils and myeloid-derived 94 

dendritic cells, while low levels of S100A8 and S100A9 are expressed constitutively in 95 

monocytes (Foell et al., 2004; Wang et al., 2018). S100A8 and S100A9 often form 96 

heterodimers (S100A8/A9) (Ometto et al., 2017). The major functions of S100A8/A9 97 
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reported so far include the regulation of leukocyte migration and trafficking, the 98 

remodeling of cytoskeleton and amplification of inflammation and exertion of 99 

anti-microbial activity (Ometto et al., 2017; Wang et al., 2018). After being infected 100 

with bacteria, neutrophils, macrophages and monocytes intensely induce the expression 101 

and secretion of S100A8/A9 to modulate inflammatory processes through the induction 102 

of inflammatory cytokines. S100A8/A9 is an endogenous ligand of toll-like receptor 4 103 

(TLR4), and can trigger multiple inflammatory pathways mediated by TLR4 (Vogl et 104 

al., 2007). The receptor for advanced glycation end products (RAGE) pathways can 105 

also be activated by S100A8/A9 (Narumi et al., 2015). S100A8 and S100A9 also have 106 

antibacterial potential via their ability to bind Zn2+ (Foell et al., 2004; Wang et al., 107 

2018). However, not much is known about the roles of S100A8/A9 in host defense 108 

responses against viruses. 109 

In the present study, we characterized the nature of the early innate immune 110 

responses evoked in rhesus macaques and mice during SARS-CoV-2 infection. S100A8 111 

was dramatically up-regulated by SARS-CoV-2 and a mouse coronavirus (mouse 112 

hepatitis virus, MHV), but not by other viruses. A group of non-canonical aberrant 113 

neutrophils were activated during SARS-CoV-2 infection. The abnormal immune 114 

responses were mediated by the S100A8/A9-TLR4 pathway. S100A8/A9 specific 115 

inhibitor, Paquinimod, significantly reduced the number of aberrant neutrophils 116 

induced by the coronavirus, inhibited viral replication and rescued lung damage. These 117 

results highlight the potential of therapeutically targeting S100A8/A9 for suppressing 118 

the uncontrolled immune response associated with severe cases of COVID-19 and 119 

provide information on alarmin-mediated pathway for regulating neutrophils. 120 

 121 

Results 122 

SARS-CoV-2 infection induces alarmin S100A8 expression and neutrophils 123 

chemotaxis 124 

To characterize the early immune responses against SARS-CoV-2 infection, we 125 

Jo
urn

al 
Pre-

pro
of



6 

 

infected rhesus macaques with SARS-CoV-2 and analyzed the transcriptome of lung 126 

and blood at day 0, day 3 and day 5 post infection (5 dpi) (Figure 1A and S1A). Gene 127 

Ontology (GO) analysis showed that a small group of genes involved in defense 128 

responses against viruses were induced in the infected lungs (Figure 1B), and type I 129 

IFNs was not induced by SARS-CoV-2 infection (Figure S1B). However, interestingly, 130 

a greater number of genes involved in regulating cellular responses to 131 

lipopolysaccharide (LPS) and neutrophil chemotaxis were induced (Figure 1B). Kyoto 132 

Encyclopedia of Genes and Genomes (KEGG) pathways analysis also showed that 133 

SARS-CoV-2 induced genes were enriched in anti-bacterial pathways (Figure S1C). 134 

Meanwhile, combined with the elevated neutrophils in COVID-19 patients with severe 135 

symptoms (Kuri-Cervantes et al., 2020; Liao et al., 2020; Tan et al., 2020; Wu et al., 136 

2020a), we hypothesized that neutrophils, which play an important anti-bacterial 137 

function, may be abnormally activated at the very beginning of SARS-CoV-2 infection. 138 

Thus, we analyzed the expression of neutrophil markers in the lungs from rhesus 139 

macaques at day 0, day 3 and day 5 post infection. The results showed that all the 140 

neutrophil marker genes were significantly induced as a result of SARS-CoV-2 141 

infection (Figure 1C). Markers for monocytes and natural killer cells were slightly 142 

up-regulated, and T cells were unchanged, while B cells were significantly 143 

down-regulated in the lungs of rhesus macaques infected by SARS-CoV-2 (Figure S1D 144 

and S1E). These suggested that the SARS-CoV-2 infection provoked a non-canonical 145 

antiviral response or an anti-bacterial response accompanied by increased neutrophils 146 

in the lung at the early stage. 147 

To explore how SARS-CoV-2 infection triggered the activation of anti-bacterial 148 

responses, the differential expression of genes before and after SARS-CoV-2 infection 149 

were examined. The results showed that the expression of S100A8 was robustly 150 

up-regulated at 3 dpi and 5 dpi after SARS-CoV-2 infection (Figure 1D). S100A8 acts 151 

as an alarmin through formation of heterodimers with S100A9, and then functions as 152 

danger associated molecular pattern (DAMP) molecules and activates innate immune 153 
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responses via binding to pattern recognition receptors (PRR), such as Toll-like receptor 154 

4 (TLR4) (Chakraborty et al., 2017). Further, we found that S100A8 was the most 155 

significantly induced gene among all the known alarmins (Figure 1E). Subsequently, 156 

through qRT-PCR analysis, we verified that the level of S100A8 surged along with an 157 

increase in the viral loads in the lungs of rhesus macaques infected by SARS-CoV-2 158 

(Figure 1F). Next, we examined the expression of alarmins and neutrophil marker 159 

genes in the blood samples from infected rhesus macaques. S100A8/A9 and the 160 

neutrophil marker genes were also induced in the blood by the SARS-CoV-2 infection 161 

(Figure 1G). We further investigated if S100A8 were up-regulated in COVID-19 162 

patients. Analysis of alarmins by RNA-seq data showed that both S100A8 and 163 

neutrophil marker genes were up-regulated in post-mortem lung samples from 164 

COVID-19 patients, compared with biopsied healthy lung tissue from uninfected 165 

individuals (Figure 1H). Concomitantly, the mRNA level of S100A8 in peripheral 166 

blood from COVID-19-positive patients was significantly higher when compared to 167 

healthy subjects (Figure S1F). A group of alarmins were induced in different types of 168 

blood cells of COVID-19-positive patients, in which S100A8 was prominently induced 169 

in CD14+ monocytes, neutrophils and developing neutrophils (Figure S1G). 170 

S100A8/A9 can act as the ligand of TLR4, which is the primary PRR that recognizes 171 

invading gram-negative bacterium. Therefore, elevated S100A8 expression may be 172 

responsible for the activation of anti-bacterial pathways and neutrophil chemotaxis. 173 

Above all, S100A8 probably play an important role in the course of SARS-CoV-2 174 

infection. 175 

 176 

Aberrant induction of S100A8 is triggered by coronaviruses but not by other 177 

viruses 178 

To further study the relationship between S100a8 expression and neutrophils 179 

chemotaxis and SARS-CoV-2 infection, we challenged human ACE2 (hACE2) 180 

transgenic mice with SARS-CoV-2 and performed RNA-seq analysis of lungs to 181 
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characterize the defense responses during viral infection (Figure 2A and S2A). 182 

Consistent with the results from the rhesus macaque, genes induced by SARS-CoV-2 183 

infection in mice were also enriched in anti-bacterial humoral response and neutrophil 184 

chemotaxis, and did not trigger typical antiviral immune responses (Figure 2B and 185 

S2B). Meanwhile, S100a8 and the neutrophil marker genes (Ly6g, Mmp8, etc.) were 186 

robustly up-regulated at 5 dpi when the mice developed sicker (Figure 2C and 2D). 187 

Consistent results across different species suggested that the sharp up-regulation of 188 

S100a8 and neutrophils chemotaxis is closely related to the formation of fatal 189 

infections by SARS-CoV-2 infection. 190 

We then constructed a mouse model of canonical pneumonia with influenza A virus 191 

(IAV) (Figure S2C). RNA-seq analysis of lungs showed that, compared with 192 

SARS-CoV-2 infection, IAV infection induced genes were enriched in defense 193 

response to virus and cellular response to IFNβ (Figure 2B and S2B). We further 194 

analyzed the differentially induced genes by SARS-CoV-2 and IAV at different time 195 

intervals after infection. The results showed that IAV induced canonical antiviral 196 

responses and activated type I IFNs signaling, while the expression of the classical 197 

antiviral molecules Ifnb1 and Isg15 was severely impaired and the anti-bacterial 198 

responses, neutrophil related processes were induced during SARS-CoV-2 infection 199 

(Figure 2C, S2D and S2E). However, IAV infection did not induced S100a8 and 200 

neutrophil marker genes expression (Figure 2C, 2D and S2F). These suggested that the 201 

intense expression of S100a8 and neutrophils chemotaxis was specifically present 202 

during SARS-CoV-2 infection. 203 

To further confirm this, we infected C57BL/6 mice with other RNA- or 204 

DNA-viruses including encephalomyocarditis virus (EMCV) and herpes simplex 205 

virus 1 (HSV-1), and measured the expression of S100A8 in the blood and lungs of 206 

infected animals. Neither of these viruses were able to induce the expression of 207 

S100a8 (Figure 2E). We investigated if other coronaviruses were able to induce the 208 

transcription of S100a8 and neutrophils chemotaxis. We first infected C57BL/6 mice 209 
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with mouse hepatitis virus (MHV-A59) intranasally. However, no obvious symptoms 210 

in infected mice were observed. Further, we infected IRF3/IRF7 double knockout 211 

mice and IFNAR deficient mice with MHV. Similar to the wild type C57BL/6 mice, 212 

IRF3/IRF7 double knockout mice were able to eliminate the virus rapidly and did not 213 

develop severe pneumonia. Interestingly, we found that all the IFNAR deficient mice 214 

infected with MHV suddenly became sicker and died with a sharp increase in S100a8 215 

and Ly6g at 3-7 dpi, and the lungs of infected mice showed obvious lesions (Figure 2F 216 

and S3A). Meanwhile, RNA-seq analysis of the lungs showed that the genes induced 217 

by MHV were also enriched in neutrophil chemotaxis and anti-bacterial pathways 218 

(Figure 2G). Compared with IAV infection, type I IFNs induction was impaired and 219 

neutrophil marker genes were significantly induced in MHV infection (Figure 2H, 220 

S2E, S3B and S3C). Taken together, SARS-CoV-2 and MHV, both coronaviruses, 221 

induced an almost uniform immune response. Thus, S100a8 expression and neutrophil 222 

chemotaxis is likely a specific feature of coronavirus infection, and involved in the 223 

formation of fatal coronavirus infections. 224 

 225 

Coronavirus infection induces the invasion of aberrant neutrophils 226 

The activation of anti-bacterial pathway, neutrophil chemotaxis and high expression of 227 

S100a8 all indicated the abnormality of neutrophils in coronavirus infection including 228 

SARS-CoV-2 and MHV. Therefore, we examined neutrophils infiltration in the lungs of 229 

infected mice. As the main cytoplasmic protein of neutrophils, S100A8 can accurately 230 

indicate neutrophils in lung tissue. Thus, immunohistochemical staining for S100A8 of 231 

the lungs in SARS-CoV-2 infection and MHV infection at 5 dpi was performed. The 232 

results showed that, compared with the control group, neutrophils (S100A8+) invading 233 

the lungs were significantly increased in both SARS-CoV-2 and MHV infection (Figure 234 

3A). This suggested that coronavirus infection does induce the invasion of neutrophils. 235 

To further accurately define neutrophil invasion during SARS-CoV-2 and MHV 236 

infection, the neutrophils in the lungs of infected mice were analyzed by flow 237 
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cytometry (Figure S4A). The results showed that almost all the neutrophils in the 238 

control group were typical CD45+CD11b+Ly6Ghigh. Surprisingly, however, most 239 

neutrophils in SARS-CoV-2- and MHV-infected mice showed 240 

CD45+CD11b+Ly6Gvariable (Figure 3B). This indicated that neutrophils in coronavirus 241 

infected mice were distorted. To investigate whether other viruses or stimuli are able to 242 

induce the production of this particular group of neutrophils, we challenged mice with 243 

IAV, EMCV, HSV and LPS. The results showed that although these infections caused 244 

fluctuations in the number of neutrophils, these neutrophils were still 245 

CD45+CD11b+Ly6Ghigh and did not appear abnormal (Figure 3C). These suggested that 246 

coronavirus infection induced the invasion of a group of aberrant neutrophils. 247 

To investigate the source of this population of aberrant neutrophils, we analyzed the 248 

peripheral blood and bone marrow of coronavirus infected mice by flow cytometry. 249 

Shockingly, neutrophils are also aberrant in the peripheral blood of SARS-CoV-2- and 250 

MHV-infected mice, even in the bone marrow (Figure S4B and 3D). The relatively low 251 

Ly-6G levels in aberrant neutrophils suggested that it may be an immature cell. Further, 252 

we purified the aberrant neutrophils in bone marrow of MHV-infected mice by flow 253 

cytometry sorting, and analyzed the expression of marker gene (Cxcr2 and Fcgr3) of 254 

mature neutrophils in these aberrant neutrophils. The qRT-PCR results showed that, 255 

compared with the normal neutrophils in control group, the expression of Cxcr2 and 256 

Fcgr3 in these aberrant neutrophils were significantly reduced, which indicated their 257 

immature characteristics (Figure S4C). A recent single cell sequencing data clarified 258 

the heterogeneity of neutrophil development and identified 8 (G0-G5c) developing 259 

neutrophil subpopulations by 24 marker genes (Xie et al., 2020). From this, the 260 

expression of the 24 marker genes in aberrant neutrophils were also analyzed. The 261 

results showed that, compared with the normal neutrophils in control group, only the 262 

expression of G1 maker genes were significantly increase in these aberrant neutrophils 263 

(Figure 3E). This suggested that these abnormal neutrophils were similar to the G1 264 

developing neutrophils. In addition, the RNA-seq data of lungs in mice infected by 265 

Jo
urn

al 
Pre-

pro
of



11 

 

SARS-CoV-2 and IAV also showed that the G5b mature neutrophils were primarily 266 

activated in IAV infection, while most neutrophils recruited in SARS-CoV-2 infection 267 

is G1 to G4 subpopulation (Figure S4D and S4E). Together, these suggested that 268 

coronavirus infection induced a population of dysplastic aberrant neutrophils, and may 269 

cause the dysregulation of the innate immune system.  270 

 271 

Paquinimod suppresses the accumulation of aberrant neutrophils and 272 

coronavirus infection  273 

Aberrant neutrophils coiled around the emergence of symptoms in mice, suggesting 274 

that they may be responsible for the fatal infection of coronavirus. Additionally, as the 275 

main cytoplasmic protein of neutrophils, S100A8 has great influence on the function of 276 

neutrophils. Therefore, to further clarify the role of S100A8 in the emergence of the 277 

aberrant neutrophils and coronavirus infection, we designed experiments to suppress 278 

the effects of S100A8/A9. Paquinimod can prevent the binding of S100A9 to TLR-4 279 

(Bjork et al., 2009; Schelbergen et al., 2015), suggesting that it can be used to block the 280 

function of S100A8/A9. Thus, we treated the mice intranasally with Paquinimod after 281 

SARS-CoV-2 and MHV infection (Figure 4A). Excitingly, the treatment of Paquinimod 282 

successfully improved the living state of mice (Figure 4B). Histopathological and 283 

immunohistochemical staining of the lungs showed that both the pulmonary 284 

interstitium damage and the invasion of neutrophils (S100A8+) were alleviated via 285 

Paquinimod treatment (Figure 4C and 4D). Further detection found that S100a8 and 286 

Ly6g expression and viral loads including SARS-CoV-2 and MHV in the mice that 287 

were successfully rescued by Paquinimod were significantly reduced (Figure 4E, 4F, 288 

S5A and S5B). Subsequently, neutrophils in Paquinimod-treated mice were analyzed 289 

by flow cytometry. As expected, compared with the coronavirus infection group, most 290 

neutrophils in Paquinimod-treated mice returned to normal CD45+CD11b+Ly6Ghigh 291 

(Figure 4G and S5C). These results indicated that Paquinimod successfully rescued 292 

mice from fatal outcome from coronavirus infection. However，Paquinimod did not 293 
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succeed in rescuing IAV-infected mice that did not show high S100a8 expression and 294 

aberrant neutrophils ( Figure 2C and S5D). Paquinimod likely blocked the function of 295 

S100A8/A9 specifically, thereby preventing the accumulation of aberrant neutrophils 296 

and fatal coronavirus infection.  297 

To evaluate the effect of Paquinimod on the modulation of immune responses in 298 

coronavirus infected mice, the RNA-seq analysis of lungs was performed. In the case of 299 

MHV infection, neutrophil chemotaxis and anti-bacterial responses were significantly 300 

downregulated after Paquinimod treatment (Figure S5E). The expression of neutrophil 301 

marker genes was also reduced by Paquinimod (Figure S5F). Meanwhile, as an 302 

important component of the adaptive immune system that plays a major antiviral role, 303 

B cells signaling pathway are significantly activated after Paquinimod treatment 304 

(Figure 4E and S5G). Further qRT-PCR analysis showed that, consistent with MHV 305 

infection, the B cell marker gene Cd19 in SARS-CoV-2 infection was also gradually 306 

restored and showed a tendency of up-regulation after Paquinimod treatment (Figure 307 

4H, 4I and S5H). These suggested that Paquinimod treatment contributed to the 308 

recovery of the aberrant immune response caused by the coronavirus, which in turn 309 

promotes the elimination of the virus.  310 

 311 

S100A8/A9 mediates the emergence of aberrant neutrophils in a TLR4 dependent 312 

manner 313 

Paquinimod treatment, which is able to inhibit the function of S100A8/A9 by blocking 314 

the binding of S100A9 to TLR4, suppressed the accumulation of aberrant neutrophils 315 

and rescued mice from fatal coronavirus infection. This suggested that the TLR4 316 

signaling pathway may play an important role in coronavirus-induced fatal infections. 317 

To make this clear, we treated mice infected by coronavirus including SARS-CoV-2 318 

and MHV with TLR4 signaling inhibitor. Resatorvid is a selective TLR4 inhibitor, 319 

which can down-regulate expression of TLR4 downstream signaling molecules. 320 

Through Resatorvid treatment, we found that the proportion of aberrant neutrophils in 321 
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coronavirus-infected mice were significantly reduced (Figure 5A and 5B). Consistently, 322 

Resatorvid also inhibited S100a8 and Ly6g expression and viral replication in lungs of 323 

the infected mice (Figure 5C and 5D). Besides, it is believed that S100A8/A9 can also 324 

activate the receptor for advanced glycation end products (RAGE) pathways (Narumi 325 

et al., 2015). To this end, we also treated mice infected by SARS-CoV-2 and MHV with 326 

RAGE inhibitor (Azeliragon). The results showed that Azeliragon treatment did not 327 

significantly prevent the production of aberrant neutrophils and viral replication 328 

(Figure S6A and S6B). This implied the critical role of the TLR4 signaling pathway in 329 

coronavirus infection. A previous study showed that S100A8/A9 can promote 330 

granulopoiesis by activating macrophages and common myeloid progenitor 331 

(Nagareddy et al., 2013). Thus, to further confirm the role of TLR4 in activating 332 

S100A8 related signaling, we treated wild type or MyD88 deficient mouse 333 

macrophages Raw264.7 with the recombinant S100A8/A9. MyD88 is an important 334 

adaptor protein, and the absence of MyD88 can lead to the suppression of TLR4 335 

signaling (Figure S6C). The detection results showed that recombinant S100A8/A9 336 

was able to induce the expression of S100a8 and neutrophil chemokine Cxcl2 in a 337 

TLR4/MyD88 dependent manner (Figure 5E). This reflected that S100A8 was able to 338 

induce the expression of itself, thereby forming a positive loop and amplifying the 339 

aberrant responses.  340 

 341 

Discussion 342 

The endogenous danger-associated molecular patterns (DAMPs) are able to trigger the 343 

activation of innate immune signaling. Alarmins are a panel of proteins or peptides that 344 

can function as DAMPs to activate various immune pathways (Bianchi, 2007; Yang et 345 

al., 2017). The fine tuning of alarmins expression is critical for maintaining immune 346 

homoeostasis. Over or sustained expression of alarmins can result in uncontrolled 347 

inflammation and cytokine storm (Chan et al., 2012; Cher et al., 2018; Kang et al., 2014; 348 

Patel, 2018). Here, we demonstrated that coronavirus, SARS-CoV-2 and MHV, induced 349 
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a robust transcription of the alarmin S100A8, which in turn led to innate antiviral 350 

immune disorder. These results were consistent with the recent studies which revealed 351 

that S100A8/A9 (calprotectin) was highly elevated in patients with COVID-19, and a 352 

prognosticator of negative outcomes (Shi et al., 2020; Silvin et al., 2020). In addition 353 

to S100A8, several alarmins had also been found to be up-regulated in COVID-19 354 

patients, which may be influenced by multiple factors, such as the course of the 355 

disease, treatment drugs and so on. Therefore, their role in COVID-19 patients still 356 

needs to be further explored. During SARS-CoV-2 infection, the induction of type I 357 

IFNs is inhibited and neutrophils abnormally response, and similar phenotypes were 358 

observed during MHV infection. The type I IFNs are the primary antiviral effectors that 359 

are usually induced at the very early stage of viral infection. Thus, the inhibition of type 360 

I IFNs suggests a disruption of the classical antiviral immune response. Meanwhile, a 361 

good deal of literatures has shown that the induction of type I IFNs was also suppressed 362 

during SARS-CoV infection (Channappanavar et al., 2016; Chu et al., 2020; Frieman et 363 

al., 2010; Matsuyama et al., 2020; Zornetzer et al., 2010). These studies suggested that 364 

delayed type I IFNs induction was responsible for lethal pneumonia in 365 

SARS-COV-infected mice. Therefore, exploring the mechanism of type I IFNs 366 

suppression may be of great significance for the containment of coronavirus infection.  367 

IFNAR deficient mice have been suggested as a potential animal model for 368 

SARS-CoV-2 experiments (Hanifehnezhad et al., 2020). In this study, we attempted to 369 

establish a mouse model of coronavirus-related severe acute respiratory distress 370 

syndrome (ARDS) by MHV. The results showed that in IFNAR deficient mice, MHV 371 

successfully invaded the lung of the mice and induced an immune response similar to 372 

SARS-CoV-2 infection. This suggested that it seems like a shared mechanism that 373 

directs the pathogenesis of pneumonia during SARS-CoV-2 infection and MHV 374 

infection. Thus, IFNAR deficient mice infected by MHV may serve as useful models 375 

for investigating ARDS associated with SARS-CoV-2 infection. Besides, the 376 

susceptibility of IFNAR deficient mice to coronavirus suggested that type I IFNs 377 
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signaling pathway may be important for resistance to coronavirus infection. IRF3 and 378 

IRF7 are key transcription factors of type I IFNs (Honda et al., 2006; You et al., 2013). 379 

However, IRF3/IRF7 double knockout mice challenged with MHV  did not develop 380 

obvious ARDS. Additionally, both previous studies and our data showed that induction 381 

of type I IFNs is blocked during SARS-CoV-2 and MHV infections (Hadjadj et al., 382 

2020; Zhou et al., 2020). These suggested that IFNAR may exert an unknown 383 

mechanism during resistance to coronavirus infection in a type I IFNs independent way.  384 

Neutrophil abnormalities were defined during SARS-CoV-2 infection through our 385 

study. Neutrophils are usually activated during bacterial infection to kill invading 386 

bacteria (Deng et al., 2013; Li et al., 2002). However, in COVID-19 patients with 387 

severe symptoms, neutrophils were found to be significantly increased (Kuri-Cervantes 388 

et al., 2020; Liao et al., 2020; Tan et al., 2020; Wu et al., 2020a). It was originally 389 

thought that the increase in neutrophils in severe COVID-19 patients may be attributed 390 

to co-infection of bacteria. However, several reports, including our study, have found 391 

that the increase of neutrophils was not due to bacterial co-infection but to a group of 392 

aberrant neutrophils induced by SARS-CoV-2 infection. Further, both our study and 393 

recent studies had identified that these abnormal neutrophils showed obvious immature 394 

characteristics (Schulte-Schrepping et al., 2020; Silvin et al., 2020; Wilk et al., 2020). 395 

This is consistent with the basic characteristics of myeloid-derived suppressor cells 396 

(MDSCs). The presence of G-MDSCs may explain reduced white blood cell levels in 397 

severe COVID-19 patients. Besides, the current study also found that thrombosis in 398 

COVID-19 was associated with higher levels of circulating neutrophil extracellular 399 

traps (NETs) and calprotectin (S100A8/A9) (Shi et al., 2020; Zuo et al., 2020). The 400 

formation of NETs is one of the main ways in which neutrophils function (Ali et al., 401 

2019; Meng et al., 2017; Yadav et al., 2019). Therefore, it is worthwhile to investigate 402 

if these aberrant neutrophils cause the increase and dysfunction of circulating NETs. In 403 

short, the exact function of these aberrant neutrophils and the mechanism of aberrant 404 

neutrophils induced by coronavirus infection remains to be further explored.  405 
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Our study showed the importance of the TLR4 signaling pathway in the formation of 406 

fatal infections by coronavirus. Through blocking TLR4 signaling, both Paquinimod 407 

and Resatorvid improved the health status of coronavirus infected mice. Previous 408 

SARS-CoV studies also showed that TLRs, including TLR3, TLR4, TLR7 and TLR8, 409 

mediated antiviral responses (Li et al., 2016; Li et al., 2013; Totura et al., 2015). 410 

Meanwhile, Tlr3-/- and Tlr4-/- mice also showed greater susceptibility to SARS-CoV 411 

than wild-type mice and the deficiency of TLRs adaptor proteins TRIF or MyD88 412 

resulted in higher mortality of mice during SARS-CoV infection (Totura et al., 2015). 413 

All these suggested that TLRs signaling also plays an important role in SARS-CoV 414 

infection, which further reflects the close relationship between TLRs signals and 415 

coronavirus infection. However, it was unknown how TLR4 signaling was activated by 416 

coronavirus infection. We here found that the sharp up-regulation of S100A8 in 417 

coronavirus infection may be responsible for activation of TLR4 signaling. S100A8 is 418 

the main cytoplasmic protein of mature neutrophils. Thus, during the initial phase of 419 

SARS-CoV-2 infection, S100a8 was slightly induced in lungs at 1dpi, possibly due to 420 

the recruitment of mature neutrophils into the lungs (Figure 2C). The RNA-seq data 421 

also showed that the marker gene Cxcr2 of mature neutrophils was up-regulated at 1 dpi 422 

during SARS-CoV-2 infection. Thus, it is possible that mature neutrophils that invaded 423 

the lungs carried large amounts of S100A8/A9, which can further induce the expression 424 

of itself. This may from a positive loop to amplify the aberrant response. Excessive and 425 

uncontrolled S100A8/A9 production strongly stimulates the TLR4 signal, which 426 

induces the aberrant neutrophils and imbalance of immune response. However, the 427 

exact mechanism of S100A8 surge and TLR4 signal activation induced by coronavirus 428 

infection remains to be further explored. A recent study predicted that antigenic 429 

epitopes within the full-length S-protein of SARS-CoV-2 may bind to TLR4/MD-2 430 

complex and activate immune response (Bhattacharya et al., 2020). Based on this, there 431 

might be a possibility that SARS-CoV-2 could directly stimulate the expression of 432 

S100A8/A9 by TLR4 signaling. As SARS-CoV-2 is an RNA virus, it is also reasonable 433 
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that SARS-CoV-2 could induce neutrophilic S100A8/A9 expression by activating RNA 434 

sensing pathways, such as RIG-I-like receptor, TLR3 and TLR7/8 signaling. Moreover, 435 

TLR4 of macrophages can also be activated by S100A8/A9. Although the expression 436 

level of S100A8 is low, the function of it in Raw 274.7 cells has been validated 437 

previously (Muller et al., 2017). We here also observed the induction of S100a8 and 438 

Cxcl2 by the treatment of S100A8/A9 (Figure 5E). Besides, the induction of 439 

proinflammatory cytokines, such as IL-1B and IL-6, in macrophages or the 440 

bronchoalveolar lavage fluid (BALF) by S100A8/A9 is also noteworthy. However, 441 

these views still need to be supported by more data in the future. 442 

In summary, we have demonstrated that coronavirus infection including 443 

SARS-CoV-2 and MHV leads to the disorder of antiviral innate immunity. It has been 444 

shown that alarmin S100A8 was robustly up-regulated and a group of aberrant 445 

premature neutrophils were induced. TLR4 signaling may mediate this abnormal 446 

immune response. The inhibitors of S100A8/A9-TLR4 axis were able to mitigate the 447 

abnormality of antiviral immunity and inhibit viral replication. These results uncover 448 

the characteristic of innate immunity in the pathogenesis of SASR-CoV-2 infection and 449 

provide therapeutic targets for the treatment of COVID-19. 450 

 451 

Limitations of the study 452 

In the rhesus macaque infection model, neutrophil abnormalities were only indirectly 453 

reflected by RNA-seq data and were not visualized by cell staining due to the 454 

limitations of the associated antibodies. Although we have shown that Paquinimod and 455 

Resatorvid are effective in preventing SARS-CoV-2 infection, their efficacy in rescuing 456 

rhesus macaques infected with SARS-CoV-2 was not further tested due to limited 457 

experimental conditions. The absence of severe disease in SARS-CoV-2-infected 458 

hACE2 mice largely limited the progress of the study, which may be due to the limited 459 

replication of the virus in hACE2 mice. This also makes that the data on weight loss of 460 

mice may seem unconvincing. Although we supplemented experimental data on mouse 461 
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coronavirus MHV infection similar to SARS-CoV-2 infection, the consistency of the 462 

two coronavirus infection mechanisms cannot be fully assured. The presence of 463 

abnormal immature neutrophils may be an important cause of severe disease during 464 

SARS-CoV-2 infection. In experiments, we found that these abnormal immature 465 

neutrophils were likely MDSCs, which effectively inhibited the production and 466 

activation of other immune cells and led to immune system disorders. This may be the 467 

root cause of the virus replication outbreak, and the detailed process needs to be further 468 

explored. SARS-CoV-2 infection was effectively inhibited by targeting 469 

S100A8/A9-TLR4 axis inhibition. However, it is still unknown how SARS-CoV-2 470 

infection induces the elevated expression of S100A8/A9 in the first place. Furthermore, 471 

the drug regimens of Paquinimod and Resatorvid need to be further optimized. In 472 

experiments, we found that poor drug use regimens had the opposite effect for reasons 473 

that are still unknown. We have developed a relatively effective drug regimen in mice, 474 

but the optimal drug regimen needs to be further explored. Collectively, the study 475 

contains many limitations, but the innate immune abnormalities and possible drug 476 

targets proposed in this study provide new therapy ideas for COVID-19. 477 
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Figure legends 505 

Figure 1. S100A8 and neutrophil-related genes expression were significantly 506 

induced in the early stage of SARS-CoV-2 infection.  507 

(A) A flow chart depicting the process of animal experiments with rhesus macaques. 508 

Rhesus macaques (3-4 years old) were challenged with 106 TCID50 SARS-CoV-2 virus 509 

by intratracheal routes. 510 

(B) Go analysis of the differences in rhesus macaques infected with SARS-CoV-2 511 

compared with Mock (Fold Change (FC) > 4 or < 0.25, P value < 0.05).  512 

(C) Analysis of neutrophil marker genes expression. n = 4.  513 

(D) Volcano plots show differentially expressed genes in rhesus macaques infected 514 

with SARS-CoV-2 at 3 dpi and 5 dpi. S100A8 expression is significantly increased after 515 

SARS-CoV-2 infection. 516 

(E) Analysis of all known alarmins showing that S100A8 is the most significantly 517 

induced one. 518 

(F) qRT-PCR analysis for viral loads and the expression of S100A8 and S100A9 in the 519 

lungs of SARS-CoV-2-infected rhesus macaques at 3 dpi and 5 dpi. n = 3.  520 

(G) Heat map shows alarmins in the blood from rhesus macaques infected with 521 

SARS-CoV-2 at 5dpi (left). The expression of neutrophil marker genes was analyzed 522 

(FC to mock, right). n = 4.  523 

(H) Heat map depicting the expression of alarmins of the lung samples from healthy 524 

control and post-mortem lung samples from COVID-19 patients (left). The expression 525 

of neutrophil marker genes analyzed (FC to healthy control, right). Data from the lungs 526 

of COVID-19 patients and healthy control correspond to GEO: GSE147507. 527 

(*P < 0.05; **P < 0.01; ***P < 0.001). 528 

 529 

Figure 2. Antiviral innate immune disorder and aberrant S100a8 expression 530 

induced by coronavirus but no other viruses. 531 

(A) A flow chart depicting the process of animal experiments with mice. All the mice 532 
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were inoculated intranasally with viruses. Virus dose: SARS-CoV-2 (105 TCID50), IAV 533 

(105 TCID50), EMCV (107 PFU), HSV-1 (106 PFU), MHV-A59 (105 PFU).  534 

(B) RNA-seq analysis of lungs from mice infected with SARS-CoV-2 or IAV. Go 535 

analysis was performed with the differentially expressed genes compared with Mock 536 

(FC > 4 or < 0.25, P value < 0.05). n = 3.  537 

(C) qRT-PCR analysis for the expression of S100a8, Ly6g, Ifnb and Isg15 in the lungs 538 

of mice at different time points after IAV or SARS-CoV-2 infection. n = 3.  539 

(D) Heat map depicting the expression differences of neutrophil marker genes in the 540 

lungs of mice infected with IAV or SARS-CoV-2.  541 

(E) qRT-PCR analysis for the expression of S100a8 and Ly6g in the blood and lungs of 542 

mice infected with different viruses. n = 3. 543 

(F) Post-infection survival curves of wild type mice and Ifnar-/- mice infected with 544 

MHV.  n = 10.  545 

(G) RNA-seq analysis of the lungs of Ifnar-/- mice infected with MHV at 5 dpi. Go and 546 

KEGG analysis were performed with the differentially expressed genes compared with 547 

Mock (FC > 4 or < 0.25, P value < 0.05).  548 

(H) qRT-PCR analysis for the expression of Ifnb, Isg15, S100a8 and Ly6g in the lungs 549 

of Ifnar-/- mice infected with IAV or MHV at 5 dpi. n = 3. 550 

(*P < 0.05; **P < 0.01; ***P < 0.001). 551 

 552 

Figure 3. A group of immature aberrant neutrophils emerged in 553 

coronavirus-infected mice. 554 

(A) Immunohistochemical analysis of the location and expression of S100A8 in the 555 

lung tissue of mice infected with SARS-CoV-2 or MHV at 5 dpi. The S100A8+ cells in 556 

the lungs of mice infected with coronavirus were increased significantly. The red 557 

arrows indicate the S100A8+ cells. n = 5. 558 

(B) Flow cytometry analysis of neutrophils in lungs from mice infected with 559 

SARS-CoV-2 and MHV at 5 dpi. Control group means mice treated with Vehicle. Gate 560 
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P1 shows the conventional neutrophils (CD45+CD11b+Ly6Ghigh), and Gate P2 shows 561 

the pathologic aberrant neutrophils (CD45+CD11b+Ly6Gvariable). Aberrant neutrophils 562 

(P2) in the lungs of mice infected with coronavirus were significantly increased. n = 3. 563 

(C) Flow cytometry analysis of neutrophils in lungs of mice challenged with IAV, 564 

EMCV, HSV-1 and LPS at 5 dpi. The results showed that these treatments did not 565 

induce an increase in aberrant neutrophils. n = 3. 566 

(D) Flow cytometry analysis of neutrophils in bone marrow from mice infected with 567 

SARS-CoV-2 and MHV at 5 dpi. n = 3. 568 

(E) qRT-PCR analyzed related genes expression of aberrant neutrophils in bone marrow 569 

of mice infected with MHV at 5 dpi and identified the differentiated types of aberrant 570 

neutrophils. n = 3.  571 

(***P < 0.001). 572 

 573 

Figure 4. Paquinimod rescues the mice infected by SARS-CoV-2 and MHV.  574 

(A) A flow chart depicting the process of a drug rescue experiment.  575 

(B) Analysis of weight and survival rate of mice infected with SARS-CoV-2 and MHV 576 

after Paquinimod treatment. n=6. 577 

(C) Analysis of the rescue effect of Paquinimod by H&E staining and pathology score 578 

of lung tissue in mice infected with SARS-CoV-2 or MHV at 5 dpi. Paquinimod 579 

treatment significantly prevented the bleeding and fibrosis in lung tissue. A number of 580 

pulmonary H&E staining images were randomly selected for pathological scoring. n = 581 

10. 582 

(D) Immunohistochemical analysis of the S100A8+ cells in the lung tissue of mice 583 

infected with SARS-CoV-2 or MHV at 5 dpi after Paquinimod treatment. The S100A8+ 584 

cells in the lungs of mice infected with coronavirus were decreased significantly after 585 

Paquinimod treatment. The red arrows indicate the S100A8+ cells. n = 5. 586 

(E) qRT-PCR analysis for the expression of S100a8 and Ly6g in the lung of mice 587 

infected with SARS-CoV2 at 5 dpi after Paquinimod treatment. n = 3. 588 
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(F) qRT-PCR analysis of viral loads in the lungs of mice infected with coronavirus 589 

SARS-CoV-2 and MHV at 5 dpi after Paquinimod treatment. n = 3. 590 

(G) Flow cytometry analysis of neutrophils in lungs, blood and bone marrow from mice 591 

infected with SARS-CoV-2 at 5 dpi after Paquinimod treatment. 592 

CD45+CD11b+Ly6Gvariable aberrant neutrophils (P2) in the mice infected with 593 

SARS-CoV-2 were significantly decreased by Paquinimod treatment. n = 3. 594 

(H) Heat map depicting a decrease in B cell related gene expression in the lungs of mice 595 

infected with SARS-CoV-2. 596 

(I) qRT-PCR analysis for the expression of B cell marker gene Cd19 in the peripheral 597 

blood of mice infected with SARS-CoV2 after Paquinimod treatment. n ≥ 5. 598 

(*P < 0.05; **P < 0.01; ***P < 0.001). 599 

 600 

Figure 5. Blocking TLR4 signal can alleviate coronavirus fatal infection.  601 

(A)-(B) Flow cytometry analysis of neutrophils in lungs, blood and bone marrow from 602 

mice infected with SARS-CoV-2 (A) and MHV (B) at 5 dpi after Resatorvid treatment. 603 

Aberrant neutrophils (P2) in the mice infected with coronavirus were significantly 604 

decreased by Resatorvid treatment. n = 3.  605 

(C)-(D) qRT-PCR analysis for the expression of S100a8, Ly6g and viral loads in the 606 

lungs of mice infected with SARS-CoV-2 (C) and MHV (D) at 5 dpi after Resatorvid 607 

treatment. n = 3. 608 

(E) qRT-PCR analysis for the effect of recombinant S100A8/A9 on S100a8 and Cxcl2 609 

expression through TLR4 pathway. n = 3. 610 

(*P < 0.05; **P < 0.01; ***P < 0.001). 611 

 612 

STAR Methods 613 

RESOURCE AVAILABILITY 614 

Lead Contact 615 

Further information and requests for resources and reagents should be directed to and 616 
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will be fulfilled by the Lead Contact, Fuping You (fupingyou@hsc.pku.edu.cn). 617 

Materials Availability 618 

This study did not generate new unique reagents. 619 

Data and Code Availability 620 

The datasets generated during this study are available at Gene Expression Omnibus 621 

(https://www.ncbi.nlm.nih.gov/geo/). The original data of the RNA-seq were uploaded 622 

to the Gene Expression Omnibus (GEO) DataSets (GEO: GSE158297). 623 

 624 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 625 

Cells 626 

Raw 274.7 cells, 17CL-1 cells, A549 cells and Vero cells were kept in our lab. Raw 627 

274.7 cells and A549 cells were cultured in RPMI 1640 medium (Gibco) 628 

supplemented with 10% FBS, 100 U/mL Penicillin-Streptomycin. 17CL-1 cells and 629 

Vero cells were cultured in DMEM medium (Gibco) supplemented with 10% FBS 630 

(PAN), 100 U/mL Penicillin-Streptomycin. All cells were incubated at 37 °C, 5% 631 

CO2.  632 

Viruses 633 

A stock of the SARS-CoV-2 virus (WH-09/human/2020/CHN, accession No. 634 

MT093631.2) was used in this study. IAV (Influenza a Virus, PR8) was a gift from 635 

Feng Qiang (Fudan University) and HSV-1 (Herpes simplex virus 1) was from A. 636 

Iwasaki (Yale University). EMCV (Encephalomyocarditis virus, VR-129B) was 637 

purchased from American Type Culture Collection (ATCC). MHV-A59 (mouse 638 

hepatitis virus A-59) has been described previously and was kept in our lab (Yang et 639 

al., 2014).  640 

Seed SARS-CoV-2 stocks and virus isolation studies were performed in Vero E6 641 

cells, and the virus titer were determined using a standard TCID50 assay. 642 

IAV was propagated in 10-day-old specific-pathogen-free embryonic chicken eggs. 643 

The allantoic fluid was collected and titrated to determine the TCID50 in A549 cells.  644 
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EMCV, HSV-1 were propagated in Vero cells, and the supernatants were used as a 645 

stock solution. The titer of viruses was determined by plaque assay in Vero cells.  646 

MHV-A59 were propagated in 17CL-1 cells, and the supernatants were used as a 647 

stock solution. The titer of the virus was determined by plaque assay in 17CL-1 cells.  648 

Animal experiments 649 

All experiments with live SARS-CoV-2 viruses were carried out in the enhanced 650 

biosafety level 3 (P3+) facilities in the Institute of Laboratory Animal Science, 651 

Chinese Academy of Medical Sciences (CAMS) approved by the National Health 652 

Commission of the People’s Republic of China. All animals care and use were in 653 

accordance with the Guide for the Care and Use of Laboratory Animals of the Chinese 654 

Association for Laboratory Animal Science. All procedures of animal handling were 655 

approved by the Animal Care Committee of Peking University Health Science Center. 656 

All animals were kept and bred in specific pathogen-free conditions under 657 

controlled temperature (23 ± 1 °C) and exposed to a constant 12 h light-dark cycle. 658 

All animals are guaranteed adequate clean water and nutritious feed. Rhesus 659 

macaques used in this study were provided by the Institute of Laboratory Animal 660 

Science, Chinese Academy of Medical Science. Wild-type (WT) C57BL/6 mice were 661 

purchased from Department of Laboratory Animal Science of Peking University 662 

Health Science Center, Beijing. The hACE2 transgenic mice, which were generated by 663 

microinjection of the mouse Ace2 promoter driving the human ACE2 coding 664 

sequence into the pronuclei of fertilized ova from ICR mice (Bao et al., 2020), were 665 

obtained from the Institute of Laboratory Animal Science, Peking Union Medical 666 

College. Interferon-α receptor gene knockout (Ifnar-/-) mice is a gift from Pro. Erol 667 

Fikrig (Yale University). Irf3/7 double knockout mice is a gift from Pro. Zhengfan 668 

Jiang (Peking University). Before the experimental operation, all animals are test or 669 

drug naïve without involvement in any previous procedures. They are healthy and 670 

have normal immunity. 671 

 672 
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METHOD DETAILS 673 

Animal Infection assays  674 

For animal infection assay, rhesus macaques (3-4 years old) were anaesthetized 675 

with 10 mg/kg ketamine hydrochloride and challenged with 106 TCID50 676 

SARS-CoV-2 virus by intratracheal routes. The hACE2 mice were intraperitoneally 677 

anaesthetized by 2.5% avertin with 0.02 mL/g body weight and inoculated 678 

intranasally with SARS-CoV-2 virus at a dosage of 105 TCID50. WT C57BL/6J mice 679 

and Ifnar-/- mice were anaesthetized by isoflurane. All the mice used were adults aged 680 

6-12 weeks. Age-matched mice were used in the same experiment. IAV is inoculated 681 

intranasally at a dosage of 105 TCID50. The doses of other inoculated viruses: EMCV 682 

(107 PFU), HSV-1 (106 PFU), MHV-A59 (105 PFU). The animals intranasally 683 

inoculated with an equal volume of PBS were used as a mock control. The health 684 

status and weight of all mice were observed and recorded daily. Rhesus macaques 685 

were euthanized at 0, 3- and 5-days post infection (dpi) to collect different tissues and 686 

examined virus replication and histopathological changes. Mice were euthanized at 0, 687 

1, 3, 5 and 7 dpi to collect different tissues and examined virus replication and 688 

histopathological changes. All the mice depicted in the study are female. However, 689 

through observation, we found that male mice seem to die more quickly than female 690 

mice after MHV-A59 infection, which may be related to hormonal metabolism 691 

between males and females. 692 

RNA sequencing (RNA-seq) 693 

Whole RNA of tissues with specific treatment were purified using TRNzol reagent. 694 

The transcriptome library for sequencing was generated using VAHTSTM mRNA-seq 695 

v2 Library Prep Kit for Illumina® (Vazyme Biotech Co.,Ltd, Nanjing, China) 696 

following the manufacturer's recommendations. After clustering, the libraries were 697 

sequenced on Illumina Hiseq X Ten platform using (2×150 bp) paired-end module. 698 

The raw data were transformed into raw reads by base calling using CASAVA. 699 

Quantitative RT-PCR (qRT-PCR) analysis 700 
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Total RNA was isolated from the tissues by TRNzol reagent (DP424, Beijing 701 

TIANGEN Biotech, China). Then, cDNA was prepared using HiScript III 1st Strand 702 

cDNA Synthesis Kit (R312-02, Nanjing Vazyme Biotech, China). qRT-PCR was 703 

performed using the Applied Biosystems 7500 Real-Time PCR Systems (Thermo 704 

Fisher Scientific, USA) with SYBR qPCR Master mix (Q331-02, Nanjing Vazyme 705 

Biotech, China). The data of qRT-PCR were analyzed by the Livak method (2−ΔΔCt). 706 

Ribosomal protein L19 (RPL19) was used as a reference gene for mice, and GAPDH 707 

for macaques. The E gene of SARS-CoV-2, N gene of MHV-A59 and M1 gene of IAV 708 

are examined for quantitation. All gene primers are displayed in supplementary 709 

materials Table S1. 710 

Histology and Immunohistochemical staining 711 

The lungs were quickly placed in cold saline solution and rinsed after they were 712 

collected. Then, lungs were fixed in 4% paraformaldehyde, dehydrated and embedded 713 

in paraffin prior to sectioning at 5 μm, and sections were stained with hematoxylin 714 

and eosin. Several pulmonary H&E staining images were randomly selected for 715 

pathological scoring in a blinded fashion. Lung damage is classified into five levels by 716 

pathological scoring. "0" represents no abnormality, "1" represents very small 717 

pathological changes, "2" represents slight pathological changes, "3" represents 718 

moderate pathological changes and "4" represents serious pathological changes. 719 

For immunohistochemical staining, the lung paraffin sections were dewaxed and 720 

rehydrated through xylene and an alcohol gradient. Antigen retrieval was performed 721 

by heating the sections to 100 °C for 4 min in 0.01 M citrate buffer (pH 6.0) and 722 

repeated 4 times. The operations were performed according to the instructions of the 723 

two-step detection kit (PV-9001, Beijing ZSGB Biotechnology, China). The samples 724 

were treated by endogenous peroxidase blockers for 10 min at room temperature 725 

followed by incubation with primary antibodies S100A8 (1:200, 47310T, Cell 726 

Signaling Technology) at 37°C for 1 h, then after washed with PBS. The samples 727 

were incubated with reaction enhancer for 20 min at room temperature and secondary 728 

Jo
urn

al 
Pre-

pro
of



28 

 

antibodies at 37°C for 30 min, and finally sections were visualized by 729 

3,30-diaminobenzidine tetrahydrochloride (DAB) and counterstained with 730 

haematoxylin. 731 

Tissue preparation and flow cytometry 732 

The lung tissues, peripheral blood and bone marrow were collected from the mice. 733 

The lungs were first ground with 200-mesh copper sieve, and then transferred to 734 

DMEM containing 10% FBS, 0.5 mg/mL Collagenase D (11088858001, Roche, 735 

Switzerland) and 0.1 mg/mL DNase I (07469, STEMCELL Technologies, Canada) for 736 

a 20 min digestion at 37℃ to obtain single-cell suspensions. Bone marrow were 737 

flushed out of the femurs using a 23–gauge needle in PBS containing 2mM EDTA and 738 

2% fetal bovine serum (FBS) and dispersed into single cells through a pipette. 739 

Single-cell samples were treated by red blood cell lysis buffer (R1010, Beijing 740 

Solarbio Science & Technology, China) for 2 min at room temperature and passed 741 

through a 200-mesh copper sieve before staining. Peripheral blood was treated with 742 

red blood cell lysis buffer to remove red blood cells.  743 

After blocking non-specific Fc receptor-mediated interactions with CD16/CD32 744 

antibodies (14-0161-82, eBioscience, USA), single-cell suspensions were stained with 745 

fluorophore-conjugated anti-mouse antibodies at 4℃ for 30min. After washing the 746 

samples, flow cytometry acquisition was performed on a BD LSRFortessa. Sorting 747 

were performed using a BD AriaIII (BD). All antibodies were purchased from 748 

eBioscience: CD45-PE (12-0451-81), Ly-6G-APC (17-9668-80), and CD11b-FITC 749 

(11-0112-81). 750 

Drug rescue assay 751 

For the Paquinimod rescue assay, all mice were challenged by viruses and randomly 752 

divided into two groups, in which one group was given intranasally 12.5 μg/day of 753 

Paquinimod (TargetMol; Catalog No. T7310) starting on 2 dpi and the other group 754 

was treated with equal volume PBS as the control group. Stock solutions of 100 755 

mg/mL Paquinimod were prepared with DMSO in advance. The health status and 756 
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weight of all mice were observed and recorded daily.  757 

For the Resatorvid/Azeliragon rescue assay, the mice challenged by viruses were 758 

given intraperitoneally 50 μg/day of Resatorvid (MCE; Synonyms: TAK-242; 759 

CLI-095) and 100 μg/day of Azeliragon (TargetMol; Catalog No. T2507) starting on 2 760 

dpi. Stock solutions of 10 mM Resatorvid and 10 mM Azeliragon were prepared with 761 

DMSO in advance and was diluted by corn oil. The control group mice were given 762 

intraperitoneally 200 μL of corn oil solution which contained 20 μL of DMSO. The 763 

health status and body weight of all mice were observed and recorded daily.  764 

Cell co-culture assay  765 

Raw 264.7 cells were seeded on 6-well plates with 106 cells/mL. After cell adherence, 766 

LPS (100 ng/mL) and mS100A8/A9 protein (1 μM) with or without Resatorvid (100 767 

nM) were added. After 12 hours co-culture, cells were harvested and lysed by TRNzol 768 

reagent for RNA extraction. Then, the expression of related genes was detected by 769 

qRT-PCR. 770 

 771 

QUANTIFICATION AND STATISTICAL ANALYSIS 772 

RNA-seq analysis 773 

The FastQC and Trim Galore were used for raw data quality control, then the R 774 

package Rsubread was used for mapping and counting the reads. The count matrix 775 

was normalized by FPKM. The differentially expressed genes were identified by the 776 

GFOLD, a Linux software. The GO and KEGG annotations of DEGs were performed 777 

in the DAVID database (https://david.ncifcrf.gov/home.jsp). 778 

Data analysis for flow cytometry data 779 

Flow cytometry data analysis was performed with FlowJo V10.0.7. Relative cell 780 

percentage was used for visualization. 781 

Statistical analysis 782 

All analyses were repeated at least three times, and a representative experimental 783 

result was presented. Prism 8 software (Graphic software) was used for survival 784 
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curves, charts and statistical analyses. Two-tailed unpaired Student’s t test was used 785 

for statistical analysis to determine significant differences when a pair of conditions 786 

was compared. Asterisks denote statistical significance (*P < 0.05; **P < 0.01; *** P 787 

< 0.001). The data are reported as the mean ± S.D. The exact value of n representing 788 

number of animals are included in each figure legend.  789 

 790 

Supplemental item 791 

Table S1. Sequences of qRT-PCR primers. Related to STAR Methods. 792 
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Highlights 

� S100A8 is dramatically up-regulated in SARS-CoV-2 infected animal models and 

patients. 

� A group of aberrant immature neutrophils is induced during SARS-CoV-2 

infection. 

� Immune disorder is mediated by the S100A8/A9-TLR4 pathway. 

� S100A8/A9 inhibitor, Paquinimod, could prevent COVID-19 associated immune 

disorder. 
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In brief 

Guo et al. demonstrate that over activation of S100A8/A9-TLR4 signaling results in 

immune imbalance and expansion of aberrant immature neutrophils during 

SARS-CoV-2 infection. Relevant therapeutic targets were validated in animal 

infection models. 
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