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Despite progress in clinical care for patients with coronavirus 
disease 2019 (COVID-19)1, population-wide interventions are 
still crucial to manage the pandemic, which has been aggra-
vated by the emergence of new, highly transmissible vari-
ants. In this study, we combined the SIDARTHE model2, which 
predicts the spread of SARS-CoV-2 infections, with a new 
data-based model that projects new cases onto casualties 
and healthcare system costs. Based on the Italian case study, 
we outline several scenarios: mass vaccination campaigns 
with different paces, different transmission rates due to new 
variants and different enforced countermeasures, including 
the alternation of opening and closure phases. Our results 
demonstrate that non-pharmaceutical interventions (NPIs) 
have a higher effect on the epidemic evolution than vaccina-
tion alone, advocating for the need to keep NPIs in place dur-
ing the first phase of the vaccination campaign. Our model 
predicts that, from April 2021 to January 2022, in a scenario 
with no vaccine rollout and weak NPIs (R0 = 1.27), as many 
as 298,000 deaths associated with COVID-19 could occur. 
However, fast vaccination rollouts could reduce mortality to 
as few as 51,000 deaths. Implementation of restrictive NPIs 
(R0 = 0.9) could reduce COVID-19 deaths to 30,000 without 
vaccinating the population and to 18,000 with a fast rollout of 
vaccines. We also show that, if intermittent open–close strat-
egies are adopted, implementing a closing phase first could 
reduce deaths (from 47,000 to 27,000 with slow vaccine roll-
out) and healthcare system costs, without substantive aggra-
vation of socioeconomic losses.

Since the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) genome was sequenced3, researchers have rushed to 
develop vaccines to curb the spread of COVID-19 (refs. 4,5). Given 
the infeasibility of long-term lockdowns6,7 and of effective contact 
tracing at high case numbers, as well as the availability of several 
approved COVID-19 vaccines, many countries have invested in 
mass vaccination rollouts. As of 13 March 2021, four vaccines—
Pfizer/BioNTech, Moderna, Oxford–AstraZeneca AZD1222 
and J&J Ad26.COV2.S—have been approved by the European 
Medicines Agency and the Italian Medicines Agency. The reported 
efficacy rates are 94% and 95%, respectively, for the Moderna and 
Pfizer/BioNTech vaccines8,9, up to 81.3% for AZD1222 after the sec-
ond dose with a longer prime–boost interval10 and up to 85% in  

preventing severe disease for J&J Ad26.COV2.S 28 d after vacci-
nation11. All vaccines have been reported to have favorable safety 
profiles8,9,11–14. Italy’s vaccination program started in late December 
202015,16 and prioritized healthcare workers, nursing home residents 
and people over 80 years of age17,18. As of 26 March 2021, 2,787,749 
people have been vaccinated in Italy with both doses (8,765,085 
doses have been administered in total)19.

Multi-pronged countermeasures, including distancing, test-
ing and tracing, are necessary to achieve a sustained reduction in 
infection cases20, even more so in light of the recent emergence of 
new SARS-CoV-2 variants21, such as B.1.1.7 and B.1.351, which are 
reported to have increased transmissibility22,23 and possibly cause 
more severe disease24 compared to the original strain. Vaccination 
alone is not expected to be able to control the spread of the infec-
tion, and a carefully planned vaccination campaign25,26 needs to be 
coordinated with continued implementation of NPIs27 until suffi-
cient coverage is reached to make the case fatality rate (CFR) similar 
to that of seasonal influenza. Table 1 outlines the main findings and 
implications for policy of our study.

With vaccines and variants as potential game-changers, new 
models to forecast epidemic scenarios and assess the associated 
healthcare costs are essential. Our proposed integrated model (Fig. 
1a) uses the compartmental model SIDARTHE2 (which we have 
extended here to include the effects of vaccination and now termed 
SIDARTHE-V) to provide the predicted evolution of new posi-
tive cases; based on new positive cases, a new data-based dynamic 
model derived from Italian field data computes the time profile of 
the resulting healthcare system costs, including hospital and inten-
sive care unit (ICU) occupancy and deaths. Although age classes 
are not explicitly included in our compartmental model, they are 
accounted for by the data-driven model. To capture the progres-
sive vaccination in reverse age order, the model takes into account 
age-dependent aggravation and death probability (Extended Data 
Fig. 5). Details are provided in the Methods.

We compare different scenarios to assess the effect of mass vac-
cination campaigns with different paces, in the presence of varying 
profiles of the reproduction number R0 over time, due to specific 
SARS-CoV-2 variants and/or restrictions. We consider four effective 
vaccination schedules (Extended Data Fig. 4), obtained by modulat-
ing linearly the speed of the four phases, T1–T4, of Italy’s vaccina-
tion plan28 and yielding a different fraction of immunized people 
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within January 2022: absent (0%), slow (47%), medium (64%) and 
fast (90%). We also consider five different time profiles of R0: con-
stant R0 = 1.27 (high transmission); Open–Close periodic R0 
with average value of 1.1, in which 1-month Openings (R0 = 1.27:  
leaving schools and shops open, wearing face masks and keeping 
physical distance) alternate with 1-month Closures (R0 = 0.9: clos-
ing schools, shops, restaurants and entertainment places), starting 
with an Opening phase; constant R0 = 1.1; Close–Open periodic 
R0 with average value of 1.1, in which 1-month Closures alternate 
with 1-month Openings, starting with a Closure phase; constant 
R0 = 0.9 (eradication).

Our main findings are summarized by the deaths versus speed 
curves in Fig. 1b, which show mortality as a function of the vac-
cination rollout speed for each R0 profile. Vaccination is assumed 
to reduce viral transmission as well as disease severity and risk of 
death. The different vaccination schedules could also be interpreted 
as different proportions of infections, diseases and deaths that the 
vaccine successfully stops, thus constituting a sensitivity analysis. 
The combination of the four vaccination schedules with the five R0 
profiles leads to 20 distinct scenarios (Fig. 1b). Eradication is associ-
ated with an almost constant curve; however, with R0 = 1.27, the 
proportion of deaths with slow, medium and fast vaccination sched-
ules could be as small as 30%, 24% and 17% of the 298,000 deaths 
with no vaccination, respectively. The deaths versus speed curves are 
flatter when R0 is kept smaller; implementation of stringent NPIs 
drastically reduces sensitivity to vaccination delays. Restrictive con-
tainment strategies (R0 = 0.9) lead to a number of deaths that could 
be as small as 10% of deaths with weak restrictions (R0 = 1.27): 
depending on the R0 profile, deaths in the period from April 2021 
to January 2022 vary in the range of 30,000–298,000 (no vaccination 
rollout), 20,000–91,000 (slow vaccination rollout), 19,000–72,000 
(medium vaccination rollout) and 18,000–51,000 (fast vaccination 
rollout). Therefore, NPIs appear to have a stronger effect on mor-
tality than vaccination speed. When planning mid-term interven-
tions, pre-emption reduces mortality and healthcare system costs 
at no additional socioeconomic cost by comparison with delayed 
implementation. Both intermittent restrictions with the same aver-
age R0 involve similar socioeconomic costs, but starting with a 
Closing phase improves on constant containment, which is better 
than starting with an Opening phase. For all vaccination schedules, 
the Close–Open strategy saves more than 14,000 lives compared to 
Open–Close. Hospital and ICU occupancy as a function of the vac-
cination speed follow a similar pattern (Extended Data Fig. 8).

Considering a medium vaccination speed, Fig. 2a–f shows the 
epidemic evolution for different constant values of R0 (the sce-
narios in the absence of vaccination are in Extended Data Fig. 2). 
Despite vaccination and implementation of current containment 
measures, a higher transmissibility due to the spread of new vari-
ants would cause a dramatic surge in infection cases, leading, within 
2 months, to a peak of almost 4,000 ICU beds needed and more 
than 700 daily deaths. To prevent this from happening and to reduce 
hospital occupancy and mortality, R0 can be reduced through 
increased stringency of NPIs, particularly in the presence of highly 
transmissible variants.

The need to implement new restrictions is likely to trigger inter-
mittent containment measures, with the alternation of higher-R0 
and lower-R0 phases29,30. In Open–Close strategies, closures are 
delayed and applied only in anticipation of the pressure on the 
healthcare system becoming unbearable. Each intermittent Open–
Close strategy can be associated with a Close–Open strategy that 
alternates opening and closing phases of the same duration, with 
the only difference of starting with a closure. Figure 2g–l compares 
the two different intermittent strategies, with average R0 equal to 
1.1, under medium-speed vaccination (the scenarios in the absence 
of vaccination are in Extended Data Fig. 3). Opening first (Open–
Close) or closing first (Close–Open) strongly affects healthcare 
system costs (which depend on case numbers), whereas socio-
economic costs (which depend on the duration and stringency of 
restrictions) are substantially unchanged. Without aggravation of 
social and economic losses with respect to an Open–Close strategy, 
a pre-emptive Close–Open strategy drastically reduces forthcom-
ing infection numbers (decreasing the peak of daily new cases from 
38,000 to 14,000), hospital and ICU occupancy and deaths (decreas-
ing the peak of daily deaths from 600 to 400). Even though the aver-
age R0 is above 1, the effective reproduction number Rt = R0S(t) 
goes below 1 due to the decreasing susceptible fraction S(t); hence, 
the epidemic is eventually suppressed (Methods).

Finally, we comparatively assess the effect of mass vaccination 
with different paces (which could be also interpreted as the effect of 
different vaccine efficacy). We assume that the number of reinfec-
tions occurring within the considered horizon is negligible. Figure 3 
compares the effect of slow versus fast vaccination under the inter-
mittent Open–Close strategy. Although vaccination leads to a net 
reduction in deaths and hospital and ICU occupancy compared 
to the corresponding scenario without vaccination, the difference 
in effect between slow and fast vaccination is modest. The speed 

Table 1 | Policy summary

Background The second wave of the SARS-CoV-2 pandemic has severely affected Italy with a high CFR. Two potential 
game-changers now affect the evolution of the epidemic: the availability of vaccines and the emergence 
of more transmissible virus variants. We combine our compartmental epidemiological model with a new 
data-based model of healthcare costs to assess the effect of the vaccination campaign on the future 
evolution of the epidemic, in the presence of different NPIs and SARS-CoV-2 variants of concern.

Main findings and limitations Even though mass vaccination has started, NPIs remain crucial to control the epidemic, in part owing to 
circulation of highly transmissible variants of SARS-CoV-2. Stricter restrictions curb transmission more 
than faster vaccine rollout. Easing NPIs leads to a surge of infection cases, calling for new closures, thus 
triggering intermittent restrictions. Pre-emptive strategies (first Close, then Open at low case numbers) 
could drastically reduce hospitalizations and deaths, without aggravating socioeconomic costs, with 
respect to a delayed intervention (first Open, then Close to prevent ICU saturation).
As with any modeling study, there are inherent limitations. We think that our scenarios are outlined based 
on reasonable assumptions, but the actual epidemic evolution will depend on the adopted measures as 
well as the possible emergence of other variants.

Policy implications Our findings strongly advocate for the need to keep NPIs in place in the first phase of the vaccination 
campaign until sufficient population immunity is reached. We also show the effectiveness of pre-emptive 
action: given a finite horizon and Close/Open phases of fixed length, closing first could spare tens of 
thousands of lives and reduce healthcare costs without aggravating socioeconomic losses by comparison 
with opening first.
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of vaccination becomes more important with a higher R0, at the 
price of many more deaths. In Extended Data Figs. 6 and 7, we also 
consider an adaptive vaccination scenario, where an increase in the 
number of current infection cases leads to a reduction of the vac-
cination rate, due to the augmented strain on the healthcare system. 
Both mortality and healthcare system costs increase, reinforcing 
conclusions about the greater importance of containment measures 
over vaccination rates.

There are limitations to our study. The SIDARTHE-V model is 
a mean-field compartmental model, which relies on the assump-
tion of a large population with homogeneous mixing and provides 
predictions that are averaged over the whole population; hence, 
geographical heterogeneity is not taken into account. More complex 
and detailed models, which account for spatial effects, social net-
works and the specificity of individual behaviors, can be developed 
and used to evaluate vaccination strategies31. Also, we assumed that 
vaccination is effective against SARS-CoV-2 variants. However, sev-
eral concerns are raised regarding variants and their potential for 
vaccine-induced immunity escape32,33; preliminary reports suggest 
that some COVID-19 vaccines might retain efficacy against vari-
ants34,35, although it might be attenuated36, whereas data suggest 
that Oxford–AstraZeneca AZD1222 might be less effective against 
B.1.351 (ref. 37). In our scenarios, we also optimistically assumed 
that successfully vaccinated individuals gain protection against 
death and hospitalization starting 3 weeks after the first vaccine 
dose rather than after the second dose.

Vaccination started with slow rates, and priority was given to 
healthcare personnel, thus delaying the CFR decrease: even under 
the fast rollout, the CFR would not be halved before June (Extended 
Data Fig. 4c). Because the decrease rate of the CFR cannot be made 

arbitrarily fast, due to availability and administration rate of vac-
cines, our findings confirm that, in the first phase of the mass 
vaccination campaign, NPIs are crucial, regardless of the (realis-
tic) vaccination speed. Given the circulation of highly transmis-
sible SARS-CoV-2 variants and the risk of potential emergence of 
vaccine-resistant mutations, R0 must be kept low until a sufficient 
level of population immunity is achieved and a large enough por-
tion of the vulnerable population has been immunized. Only then 
can NPIs be safely and gradually released; the time at which this 
happens will depend on the speed of vaccine rollout.

To outrun the faster spread of the virus variants, the United 
Kingdom (UK) launched an extensive COVID-19 vaccination cam-
paign, accelerated by extending the interval between doses: more 
than 29 million people have received at least one vaccine dose as of 
25 March, which has reduced deaths and hospital admissions38. Our 
model confirms that implementation of strong NPIs could bring the 
epidemic under control without vaccines or before reaching popu-
lation immunity, as happened in the UK during January 2021: the 
highly transmissible B.1.1.7 variant, which first emerged in Kent, 
UK, and spread throughout the UK, was brought under control by 
lockdown restrictions kept in place during the first crucial phases of 
the vaccine rollout campaign. In the meantime, vaccine rollout in 
the UK has enabled planning subsequent gradual release of NPIs38,39. 
Although the UK is heading into the second phase of the vaccina-
tion campaign, Italy is at an early phase, close to the UK’s first. To 
contain the new Italian outbreak of SARS-CoV-2, driven by the new 
variants of concern, it is important to maintain NPIs to prevent an 
uncontrolled surge in the number of infections, hospitalizations and 
deaths, because vaccination alone will be insufficient to control the 
epidemic. In parallel, accelerating the vaccination campaign, as was 
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Fig. 1 | Model scheme and summary of our findings. a, Graphical scheme of our model (adapted from Giordano et al.2). The compartmental SIDARTHE-V 
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model computes the evolution of deaths and ICU and hospital occupancy. b, Death versus vaccination speed curves. For a given R0 profile, the curve 
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population at the end of the period. The death versus vaccination speed curves corresponding to a constant reproduction number are reported in purple 
(R0 = 1.27), orange (R0 = 1.1) and blue (R0 = 0.9), whereas those corresponding to intermittent strategies are reported in red (Open–Close) and 
green (Close–Open).
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done in the UK (perhaps also by increasing the interval between 
doses), would be worth considering.
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Methods
Our overall model (Fig. 1a) combines the flexibility and insight of compartmental 
models with the intrinsic robustness of a black-box healthcare system cost model 
based on observed data. The SIDARTHE-V model, including the compartment of 
vaccinated individuals (first block in Fig. 1a), generates the predicted evolution of 
new positive cases, which is used by the data-based model (second block in Fig. 1a) 
that captures hospitalization flows and quantifies healthcare system costs in terms 
of deaths and of hospital and ICU occupancy.

The data used to inform the model are taken from publicly available 
repositories and reports: https://github.com/pcm-dpc/COVID-19/tree/master/
dati-andamento-nazionale for epidemiological data on the evolution of the 
COVID-19 epidemic in Italy until 12 March 2021; https://www.epicentro.
iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-
19_13-gennaio-2021.pdf for age-dependent CFRs; and http://dati.istat.it/Index.
aspx for demographic information on the Italian population (needed to take age 
classes into account). Indeed, although age classes are not explicitly included in 
our compartmental SIDARTHE-V model, they are taken into account by the 
data-based model for healthcare system costs, which quantifies hospitalizations, 
ICU occupancy and deaths. The CFRs (and hospitalization rates) are computed by 
taking population age classes into account, as shown in Extended Data Fig. 5, using 
demographic information from http://dati.istat.it/Index.aspx.

SIDARTHE-V compartmental model. The SIDARTHE-V compartmental model 
shown in Fig. 1a extends the SIDARTHE model, introduced by Giordano et al.2, by 
including the effect of vaccination. This leads to nine possible stages of infection: 
susceptible individuals (S) are uninfected and not immunized; infected individuals 
(I) are asymptomatic and undetected; diagnosed individuals (D) are asymptomatic 
but detected; ailing individuals (A) are symptomatic but undetected; recognized 
individuals (R) are symptomatic and detected; threatened individuals (T) have 
acute life-threatening symptoms and are detected; healed individuals (H) have had 
the infection and recovered; extinct individuals (E) died because of the infection; 
and vaccinated individuals (V) have successfully obtained immunity without 
having been infected.

The dynamic interaction among these nine clusters of the population is 
described by the following nine ordinary differential equations, describing how the 
fraction of the population in each cluster evolves over time:

Ṡ (t) = −S (t) (αI (t) + βD (t) + γA (t) + δR (t)) − φ(S(t)) (1)

İ (t) = S (t) (αI (t) + βD (t) + γA (t) + δR (t)) − (ε + ζ + λ) I (t) (2)

Ḋ (t) = εI (t) − (η + ρ)D (t) (3)

Ȧ (t) = ζI (t) − (θ + μ + κ)A (t) (4)

Ṙ (t) = ηD (t) + θA (t) − (ν + ξ + τ1) R (t) (5)

Ṫ (t) = μA (t) + νR (t) − (σ + τ2) T (t) (6)

Ḣ (t) = λI (t) + ρD (t) + κA (t) + ξR (t) + σT (t) (7)

Ė (t) = τ1R(t) + τ2T (t) (8)

V̇ (t) = φ(S(t)) (9)

The uppercase Latin letters (state variables) represent the fraction of population 
in each stage, whereas all the considered parameters, denoted by Greek letters, are 
positive numbers and have the following meaning:
•	 The contagion parameters α, β, γ and δ, respectively, denote the transmission 

rate (defined as the probability of disease transmission in a single contact 
multiplied by the average number of contacts per person) due to contacts 
between a Susceptible individual and an Infected, a Diagnosed, an Ailing or a 
Recognized individual. These parameters can be modified by social distanc-
ing policies (for example, closing schools, remote working and lockdown) 
as well as physical distancing, adoption of proper hygiene behaviors and use 
of personal protective equipment. The risk of contagion due to Threatened 
individuals, treated in proper ICUs, is assumed to be negligible.

•	 The diagnosis parameters ε and θ, respectively, denote the probability rate of 
detection, relative to asymptomatic and symptomatic cases. These parameters, 
also modifiable, reflect the level of attention on the disease and the number 
of tests performed over the population: they can be increased by enforcing a 
massive contact tracing and testing campaign.

•	 The symptom onset parameters ζ and η represent the probability rate at 
which an infected individual, respectively, undetected and detected, develops 
clinically relevant symptoms. Although disease dependent, they might be 
partially reduced by improved therapies and acquisition of immunity against 
the virus.

•	 The critical/aggravation parameters μ and v, respectively, denote the  
rate at which undetected and detected infected symptomatic individuals 
develop life-threatening symptoms. The parameters can be reduced  
by means of improved therapies and acquisition of immunity against  
the virus.

•	 The mortality parameters τ1 and τ2, respectively, denote the mortality rate 
for infected individuals with symptoms (presumably in hospital wards) and 
with acute symptoms (presumably in ICUs) and can be reduced by means of 
improved therapies.

•	 The healing parameters λ, κ, ξ, ρ and σ denote the rate of recovery for the five 
classes of infected individuals and can be increased thanks to improved treat-
ments and acquisition of immunity against the virus.

•	 The vaccination function φ(S(t)) represents the rate at which susceptible  
individuals successfully achieve immunity through vaccination (the rate 
depends on both the actual vaccination rate and the vaccine efficacy);  
possible choices are the state-dependent φ(S(t)) = φS(t), leading to an  
exponential decay of the number of susceptible individuals, and φ(S(t)) = 
φS(t) > 0 as long as S(t) > 0 (φ(S(t) = 0 otherwise), leading to a linear  
decay. In the latter case, φ(t) can be piecewise constant, as in the vaccination 
profiles in Extended Data Fig. 4. It is worth stressing that any vaccine  
(Pfizer/BioNTech, Moderna, Oxford–AstraZeneca, J&J and any other)  
can be considered within the model as the inducer of immunity, without  
altering the model validity.

Concerning the duration of immunity, correlates of protection against 
SARS-CoV-2 infection in humans are not yet established, but the results of a 
clinical trial with the mRNA-1273 vaccine show that, despite a slight expected 
decline in titers of binding and neutralizing antibodies, mRNA-1273 has the 
potential to provide durable humoral immunity: as the natural infection, which 
produces variable antibody longevity and might induce robust memory B cell 
responses, also mRNA-1273 vaccine elicited primary CD4 type 1 helper T 
responses 43 d after the first vaccination, and protection persists after 119 d40. 
Although it is unclear how long protective effects last beyond the first few months 
after vaccination, some studies suggest that the elicited neutralizing activity is 
maintained for up to 8 months after the natural infection with SARS-CoV-2  
(refs. 41,42). Reasonably, considering that a similar pattern of responses lasting 
over time will also emerge after vaccinations, it would be at least unlikely that any 
potential reinfection would occur over the horizon considered by our scenarios. 
This is why reinfections have not been explicitly considered in the model, given 
that we are focused on short-term horizons.

Also, it is worth stressing that we are considering the rate of successful 
immunization, not of vaccine dose administration (this is why immunity  
is built up with a slower pace with respect to the expected vaccine roll-out 
logistics); people who get vaccinated, but for whom the vaccine is not  
effective, remain susceptible and are, therefore, equally at risk of serious  
disease and death.

The system is compartmental and has the mass 
conservation property: as it can be immediately checked, 
Ṡ (t) + İ (t) + Ḋ (t) + Ȧ (t) + Ṙ (t) + Ṫ (t) + Ḣ (t) + Ė (t) + V̇(t) = 0, hence 
the sum of the states (total population) is constant. Because the variables denote 
population fractions, we have:

S(t) + I(t) + D(t) + A(t) + R(t) + T(t) + H(t) + E(t) + V(t) = 1,

where 1 denotes the total population, including deceased. Note that H(t), E(t) and 
V(t) are cumulative variables that depend only on the other ones and on their own 
initial conditions.

Given an initial condition S(0), I(0), D(0), A(0), R(0), T(0), H(0), E(0) and V(0) 
summing up to 1, if the vaccination function φ(S(t)) > 0 as long as S(t) > 0, the 
variables converge to

S̄ = 0, Ī = 0, D̄ = 0, Ā = 0, R̄ = 0, T̄ = 0, H̄ ≥ 0, Ē ≥ 0, V̄ ≥ 0,

with H̄ + Ē + V̄ = 1. So only the vaccinated/immunized, the healed and 
the deceased populations are eventually present, meaning that the epidemic 
phenomenon is over. All the possible equilibria are given by 

(

0, 0, 0, 0, 0, 0, H̄, Ē, V̄
)

, 
with H̄ + Ē + V̄ = 1.

To better understand the system behavior, we partition it into three subsystems: 
the first includes just variable S (corresponding to susceptible individuals); the 
second, which we denote as the IDART subsystem, includes I, D, A, R and T (the 
infected individuals); and the third includes variables H, E and V (representing 
healed, defunct and vaccinated/immunized).

The overall system can be seen as a positive linear system subject to  
a feedback signal u. Defining x = [I D A R T]T, we can rewrite the IDART 
subsystem as
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ẋ (t) = Fx (t) + bu (t) =





















−r1 0 0 0 0

ε −r2 0 0 0

ζ 0 −r3 0 0

0 η θ −r4 0

0 0 μ ν −r5





















x(t) +





















1

0

0

0

0





















u(t) (10)

yS (t) = c⊤x (t) =
[

α β γ δ 0
]

x(t) (11)

yH (t) = f⊤x (t) =
[

λ ρ κ ξ σ
]

x(t) (12)

yE (t) = d⊤x (t) =
[

0 0 0 τ1 τ2
]

x(t) (13)

u (t) = S(t)yS (t) (14)

where r1 = ε + ζ + λ, r2 = η+ ρ, r3 = θ+ µ + κ, r4 = ν+ ξ + τ1 and 
r5 = σ+ τ2. The remaining variables satisfy the differential equations

Ṡ (t) = −S (t) yS (t) − φ (S (t)) (15)

Ḣ(t) = yH(t) (16)

Ė(t) = yE(t) (17)

V̇(t) = φ (S (t)) (18)

We can also distinguish between diagnosed healed HD(t), evolving as

ḢD (t) = ρD (t) + ξR (t) + σT (t) ,

and undiagnosed healed HU(t), evolving as

ḢU (t) = λI (t) + κA (t) .

Then, the overall system is described by the infection stage dynamics

ẋ (t) = (F + bS (t) c⊤)x (t)

along with the equations for S(t), E(t) and H(t) (or, equivalently, HD(t) and HU(t)).
The parametric reproduction number R0 is the H∞ norm of the positive system 

from u to ys with parameters tuned at the beginning of the epidemic—that is, when 
the fraction of susceptible individuals is 1. A simple computation leads to

R0 =
α + βε

r2 + γζ
r3 + δ( ηε

r2r4 + ζθ
r3r4 )

r1

All the parameters but φ are represented in R0. Because these parameters depend 
on the adopted containment measures, on the effectiveness of therapies and of the 
efficacy of testing and contact tracing, R0 is time varying in principle. Conversely, 
the basic reproduction number is the value of the parametric reproduction number at 
the first onset of the epidemic outbreak, and its value was estimated to range between 
2.43 and 3.1 for SARS-CoV-2 in Italy43. The current reproduction number Rt is the 
product between R0 and the susceptible fraction: Rt = R0S(t). Notice that R0 
depends linearly on the contagion parameters. A thorough parameter sensitivity 
analysis has been worked out for the SIDARTHE model2.

Fundamental mathematical results on the stability and convergence of the 
model in the absence of vaccination (that is, φ(S(t)) = 0) are summarized next.

The system (10), (14) with constant parameters and constant susceptible 
population S (̄t) is asymptotically stable if and only if Rt̄ < 1. The equilibrium 
point x̄, S̄ of system (10), (14) with constant parameters after t̄ is given by x̄ = 0 
and S̄ satisfying

ln
(

S(̄t)
S̄

)

+ R0
(

S̄ − S (̄t)
)

= −c⊤F−1x(̄t)

The condition Rt = R0S (t) < 1 is always verified after a certain time instant, 
so that x (t) → 0 and S (t) → S̄ with R0S̄ < 1.

As a consequence, epidemic suppression is achieved when the inequality 
Rt = R0S (t) < 1 is always verified from a certain moment onward.

Fit of the SIDARTHE-V model for the COVID-19 epidemic in Italy. We infer 
the parameters for models (1)–(9) based on the official data (source: Protezione 

Civile and Ministero della Salute) about the evolution of the epidemic in Italy from 
24 February 2020 through 26 March 2021. We turn the data into fractions over the 
whole Italian population (~60 million) and adopt a best-fit approach to find the 
parameters that locally minimize the sum of the squares of the errors.

With parameters estimated based on data until 26 March 2021, the 
SIDARTHE-V model reproduces the second wave of infection and feeds the 
health cost model that quantifies the healthcare system costs in different scenarios, 
encompassing Close–Open strategies during the mass vaccination campaign.

The validation in Extended Data Fig. 1 shows how the SIDARTHE model 
(initially without vaccination) can faithfully reproduce the epidemic evolution 
observed so far. In the figures, the evolution over time of the number of active 
cases, hospitalizations and ICU occupancy, as well as daily deaths, is reported in 
logarithmic scale, comparing data (dots) with the model prediction (solid line). 
After 8 March 2020, a strict lockdown brought the Italian effective reproduction 
number below 1, successfully reversing the COVID-19 epidemic trend. 
Commercial and recreational activities gradually reopened, until the lockdown 
was fully lifted on 3 June. The lockdown relaxation coincided with a decreased risk 
perception and increased social gatherings when, after the first wave, restrictions 
were eased during the summer. Hence, as expected, a new upward trend in 
SARS-CoV-2 infections began in mid-August. The increase in daily cases, slow 
and steady at first, eventually led to a failure in the contact tracing system and the 
occurrence of a second wave. School reopening in the third week of September led 
to a steady increase in the number of new cases and hospital and ICU occupancy. 
This prompted the Italian government, on 4 November, to introduce a three-tier 
system enforcing diversely strict containment measures on a regional basis, 
depending on different risk scenarios. The slow decrease of the reproduction 
and hospitalization numbers led to stricter rules for the period of 24 December 
to 6 January. The initial onset of the second wave can be promptly identified at 
the beginning of August 2020, when the infection variables reached a minimum 
value. The descent phase of the second wave was much slower than that of the 
first, revealing that the enforced containment measures were milder. In particular, 
progressive countermeasures were enforced on 24 October (partial limitations), 4 
November (regional lockdowns) and December (country-wide lockdown). Mild 
easing of restrictions and school reopening started on 7 January 2021, whereas 
other regional measures were implemented on 15 January, subsequently eased and 
then reinforced.

To reproduce the epidemic evolution over time, the system parameters are 
piecewise constant and are possibly updated at the following days:

[1 4 12 22 28 36 38 40 47 60 75 119 151 163 182 213 221 253 258 275 276 293 
308 320 325 328 342 346 351 368 373 386]

The chosen parameter values are
α = [0.6588 0.4874 0.4886 0.3467 0.2311 0.2543 0.2543 0.3174 0.3467 0.3351 

0.3236 0.3236 0.3467 0.4391 0.4045 0.3699 0.4869 0.4166 0.3567 0.3567 0.3267 
0.3567 0.3932 0.3533 0.3533 0.4032 0.3034 0.3433 0.4471 0.4471 0.4471 0.3872]

β = [0.012 0.006 0.006 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 
0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 
0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053]

γ = [0.4514 0.2821 0.2821 0.1980 0.1089 0.1089 0.1089 0.1089 0.1089 0.1188 
0.1188 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 
0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485 0.1485]

δ = [0.0113 0.0056 0.0056 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
0.005 0.005 0.005 0.005 0.005 0.005]

ε = [0.1703 0.1703 0.1419 0.1419 0.1419 0.1419 0.1992 0.2988 0.2988 0.2988 
0.2988 0.6972 0.2490 0.2988 0.2590 0.2294 0.3137 0.2868 0.2868 0.2988 0.2988 
0.2988 0.2988 0.3988 0.3988 0.1988 0.2968 0.3088 0.2988 0.2988 0.2988 0.2988]

θ = [0.3705 0.3705 0.3705 0.3705 0.3705 0.3705 0.3705 0.5 0.5 0.5 0.5 0.5 0.5 
0.6 0.3 0.6 0.37 0.370 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 
0.37]

ζ = [0.1254 0.1254 0.1254 0.0340 0.0340 0.0341 0.0250 0.0250 0.0015 0 0.0001 
0.0001 0.0005 0.0020 0.0030 0.0020 0.0046 0.0025 0.0025 0.0025 0.0025 0.0025 
0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025]

η = [0.1054 0.1054 0.1054 0.0286 0.0286 0.0286 0.0286 0.021 0.0015 0 0 0 
0.0005 0.002 0.0031 0.0026 0.003 0.0013 0.0013 0.001 0.0015 0.0018 0.0018 0.0018 
0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018]

μ = [0.0205 0.0205 0.0205 0.0096 0.0084 0.0036 0.0036 0.0036 0 0 0 0.0036 
0.0036 0 0.0024 0.0036 0.06 0.12 0.12 0. 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 
0.12 0.12 0.12]

ν = [0.03 0.03 0.01 0.01 0.01 0.008 0.007 0.006 0.005 0.004 0.025 0.025 0.0026 
0.0026 0.0026 0.002 0.002 0.002 0.002 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.02 0.02 0.02 0.02]

τ2 = [0 0 0 0 0 0 0.035 0.045 0.045 0.045 0.4500 0.45 0.02 0 0 0 0 0.0005 0.0005 
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17]

τ1 = [0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.01 0.01 0 0 0 0 0 0 0.018 0.018 
0.001 0.001 0.005 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
0.005]

λ = [0.0482 0.0482 0.0482 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 
0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 
0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128 0.1128]
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ρ = [0.0342 0.0342 0.0342 0.017 0.017 0.017 0.02 0.022 0.022 0.045 0.045 0.045 
0.02 0.018 0.018 0.018 0.018 0.018 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 
0.032 0.032 0.032 0.032 0.032 0.032]

κ = [0.0171 0.0171 0.0171 0.0171 0.0171 0.0171 0.02 0.022 0.022 0.035 0.035 
0.035 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.02 0.02 0.02 0.02]

χ = [0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.0083 0.0083 
0.0207 0.012 0.012 0.0037 0.0019 0.0019 0.00067 0.00067 0.00067 0.00015 0.022 
0.022 0.032 0.022 0.0220 0.022 0.022 0.0120 0.022 0.012 0.012 0.012 0.012]

σ = [0.0513 0.0513 0.0513 0.0513 0.0513 0.0513 0.03 0.03 0.06 0.075 0.003 0 0 
0 0.024 0.024 0.024 0.024 0.0024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 
0.024 0.024 0.024 0.024 0.024]
and lead to the following piecewise constant parametric reproduction number:

R0 = [2.5200 1.7692 1.9725 1.3859 0.9593 1.0448 0.9162 0.8533 1.0138 0.8997 
0.8715 0.5008 1.1494 1.3398 1.3776 1.4154 1.3439 1.2464 1.0104 0.9827 0.9097 
0.9812 1.0685 0.9726 0.8150 0.9113 1.0709 0.9516 1.1747 1.2004 1.2651 1.0579]

Starting with day 405 (5 April 2021), the parameters are differentiated 
depending on the different scenarios associated with the presence of new virus 
variants and/or of the adoption of different restrictions:
•	 High transmission: α = 0.477, leading to a constant R0 = 1.27
•	 Open–Close: α switches every month between the high value 0.477 and the 

low value 0.3198; hence, every month R0 switches between the values 1.27 
and 0.9, with an average value of about 1.1.

•	 Constant α = 0.4092, leading to R0 = 1.1
•	 Close–Open: α switches every month between the low value 0.3198 and the 

high value 0.477; hence, every month R0 switches between the values 0.9 and 
1.27, with an average value of about 1.1. The Close–Open strategy features 
the same pattern as the Open–Close strategy, the only difference being that it 
starts with a closure phase.

•	 Eradication: α = 0.3198, leading to a constant R0 = 0.9.
Different parameter choices for the SIDARTHE-V model might yield the 

same R0. However, we have fitted our model based on a long history of data 
(since February 2020) and on a priori information about the epidemic and its 
management; to show the effect of a different R0, we are only modifying the 
infection parameters—that is, the high-sensitivity parameters (according to the 
thorough sensitivity analysis performed in our previous work2) that are affected 
by the spread of more transmissible variants and by NPIs. If two different 
combinations of parameters could fit equally well all the past data history and yield 
the same R0, the resulting long-term future evolution would also be similar. Any 
parameter choice that successfully reproduces the observed total number of cases is 
suitable for our goal: through the SIDARTHE-V model, we are computing only the 
predicted total number of detected infection cases, which is then projected onto 
healthcare system costs (including deaths and hospitalizations) by the data-based 
model.

The vaccination function is chosen according to the three different profiles 
shown in Extended Data Fig. 4, where φ (S (t)) = φ (t) is piecewise constant  
(of course, φ (S (t)) = 0 when S(t) = 0).

In the adaptive vaccination scenarios in Extended Data Figs. 6 and 7, conversely, 
the vaccination function is chosen as max{[1 − r (D (t) + R (t) + T (t))] φ (t) ;0}, 
where φ(t) is the same piecewise constant vaccination profile as above, whereas the 
parameter r is chosen as r = 10−6.

Note that our model accounts for the effective immunization rate, regardless 
of the adopted vaccine. Any vaccine can be included in the model without 
altering its validity: the resulting immunization curves can be derived with the 
same procedure, regardless of the specific vaccine that has been used to achieve 
immunity.

Adaptive vaccination under a medium vaccination schedule (Extended 
Data Figs. 6 and 7) leads to increased healthcare system costs with respect to 
piecewise constant vaccination functions (Figs. 2 and 3) for all R0 profiles. 
These costs can be compared with the even worse outcomes that are expected 
without vaccination, displayed in Extended Data Figs. 2 and 3. When R0 = 1.27, 
thousand deaths in the period from April 2021 to January 2022 increase from 
90 to 229 (slow speed), from 72 to 220 (medium speed) and from 51 to 204 (fast 
speed), whereas they would be 298 without vaccination. Under the Open–Close 
strategy with average R0 equal to 1.1, thousand deaths in the period from April 
2021 to January 2022 increase from 47 to 76 (slow speed), from 42 to 70 (medium 
speed) and from 35 to 62 (fast speed), whereas they would be 126 without 
vaccination. When R0 = 1.1, thousand deaths in the period from April 2021 to 
January 2022 increase from 34 to 48 (slow speed), from 30 to 44 (medium speed) 
and from 25 to 38 (fast speed), whereas they would be 96 without vaccination. 
Under the Close–Open strategy with average R0 equal to 1.1, thousand deaths in 
the period from April 2021 to January 2022 increase from 27 to 37 (slow speed), 
from 24 to 33 (medium speed) and from 21 to 28 (fast speed), whereas they 
would be 84 without vaccination.

Data-driven model of healthcare system costs. To predict the evolution of deaths 
from the time series of reported cases, a field estimate of the apparent CFR is 
needed. This parameter is affected by the testing protocol, the healthcare system 
reaction and the age distribution of vaccinated people. For these reasons, a specific 

model should be derived for each country resorting to a data-based approach. 
We considered the Italian case, but the methodology has general validity and 
could be promptly applied to other countries. The input–output model predicting 
deaths from the new cases was derived in two steps. First, a data-based dynamic 
model for the unvaccinated population was estimated from data collected during 
the second wave. The static gain of this dynamic model coincides with the CFR 
for the unvaccinated population. In the second step, this gain was multiplied by 
a time-varying function that accounts for the lethality decrease consequent to 
progressive vaccination of older people.

The input of the dynamic model is the time series of new cases n(t), and 
the output is the time series of daily deaths d(t). Given the variations of testing 
protocols and the large number of unreported cases during the first wave, the 
model was estimated using second-wave data collected within a 110-d window 
ending on 7 February 2021. More recent data were not used because the base CFR 
model should not be affected by vaccinations, whose effect is suitably incorporated 
in a second step as detailed below. The model assumes that the deaths at day t 
depend on the past new cases according to the equation

d(t) =

∞
∑

i=0
w(i)n(t − i)

where the weight w(i) denotes the fraction of individuals who became infected at 
day t-i who eventually die at day t. The CFR for the unvaccinated population is then 
given by

CFR0 =

∞
∑

i=0
w(i)

To estimate the weights, an exponential model with delay was assumed:

w(i) =

{ 0, i < k

bfi−k, i ≥ k

where k is the delay and f and b are unknown parameters. Because both the  
new cases and the daily deaths exhibit an apparent weekly seasonality, the  
original series were replaced by their 7-d moving average. Parameters were 
estimated via least squares using the function oe.m of the MATLAB System 
Identification Toolbox44. The estimation of f and b was repeated for all delays k 
ranging from 0 to 15, and the delay k = 3, associated with the best sum of squares, 
was eventually selected. The estimated parameters and their percent coefficients  
of variation were:

f = 0.948, CV (%) = 0.311

b = 0.00141, CV(%) = 5.36

Then, recalling the formula for the sum of the harmonic series, the 
second-wave CFR for the unvaccinated population is given by

CFR0 =

∞
∑

i=0
w(i) =

b
1 − f

= 0.027

In the second step, the effect of vaccination on lethality was modeled by 
estimating a time-varying CFR(t) that depends on the vaccination schedule, 
described by the fraction V(t) of vaccine-immunized individuals at time t. Order 
of vaccination follows the reverse of the age. Slower or faster vaccination speeds 
correspond to different curves V(t), whose rate of increase might be less or more 
rapid. Three schedules were considered: fast, medium and slow. The fast schedule 
assumes that each the four phases, T1–T4, of the Italian vaccination plan45 is 
completed in one trimester. In the medium and slow schedule, the time was 
linearly extended by a factor 1.2 and 1.4, respectively. The three schedules are 
graphically displayed in Extended Data Fig. 4. To account for vaccines that were 
already administered, the scheduled vaccination rate from 27 December 2020 to 
12 March 2021 was replaced by the actual average rate of second-dose vaccinations 
from 27 December to 19 February, considering that immunization develops with 
some weeks of delay after the administration.

The COVID-19 lethality CFRa for an individual of age a was obtained by 
rescaling values published the Italian National Institute of Health46. Rescaling was 
necessary because the published values were inflated by the inclusion of patients 
who died during the first wave, when new cases were massively underreported. 
Rescaling was performed in such a way that the overall lethality coincides with 
CFR0 = 0.027. The profile CFRa is displayed in Extended Data Fig. 5c.

If we assume that the number of deaths does not significantly affect the overall 
age distribution, the probability P(Age = a) can be directly inferred by ISTAT 
statistical tables47. The distribution was corrected by subtracting individuals who 
were already vaccinated on 19 February 2021, whose ages are made available on the 
vaccine open data repository48. The distribution of population by age is displayed 
in Extended Data Fig. 5c.
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Recalling that V(t) is the fraction of vaccine-immunized individuals, and 
vaccination order follows the reverse of the age, the probability of death for an 
individual of age a who becomes infected at time t is

P(Death|Age = a, Infected, t) =

{

0, V(t) > P(Age > a)

CFR(a), V(t) ≤ P(Age > a)

Then, the time-varying CFR is obtained by the total probability theorem:

CFR(t) =

100
∑

a=0
P(Death|Age = a, Infected, t)P(Age = a|Infected, t)

where P(Age = a|Infected, t) denotes the probability that the age of an individual is 
a, knowing that the individual became infected at time t. During the second wave, 
the age distribution of the infected individuals46 was similar to the age distribution 
of the Italian population. For instance, 56% of the population is in the age range 
0–50 years, 28% is in the range 51–70 years and 16% is older than 70 years. In 
comparison, 55.6% of diagnosed cases between 18 December 2020 and 10 January 
2021 were in age range 0–50 years, 28% in the range 51–70 years and 16.4% over 
70 years. Therefore, P(Age = a|Infected, t) = P(Age = a), so that the CFR of an 
individual infected at time t can be computed as

CFR(t) =

100
∑

a=0
P(Death|Age = a, Infected, t)P(Age = a)

The steps of the procedure for the computation of CFR(t) are summarized in 
Extended Data Fig. 5. The time-varying profiles CFR(t) for the three vaccination 
schedules are plotted in Extended Data Fig. 4. Because protection against 
hospitalization and death has been observed already after the first dose, the 
calculation of the time-varying CFR was based on first dose administration, 
assumed twice as fast as second dose administration.

Finally, the input–output model that accounts for the effect of vaccination is 
given by

d(t) =

∞
∑

i=0
w(i)C(t − i)n(t − i), C(t) =

CFR(t)
CFR0

Due to the time-varying coefficient C(t), the same number of new cases will 
yield fewer and fewer deaths as vaccination comes to protect older segments of the 
population.

Dynamic models for hospital and ICU occupancies were developed in a similar 
way. The estimated parameters and their percent coefficients of variation for 
hospital occupancy (estimated delay k = 0) were:

a = 0.9522, CV (%) = 0.226

f = 0.0694, CV(%) = 4.26

Those for ICU occupancy (estimated delay k = 0) were:

a = 0.953, CV (%) = 0.328

f = 0.00677, CV(%) = 6.297

Assuming that gravity reduction parallels the lethality one, the effect of 
vaccination on hospital and ICU occupancies was described by modulating the 
input through the time-varying coefficient C(t).

As seen in Extended Data Fig. 9, the three data-based dynamic models provide 
a very good fitting of deaths and hospital and ICU occupancies.

Our scenarios: different values of R0. The chosen values of R0 are based on 
plausible scenarios, in view of what has been observed throughout the past year 
in Italy, with a suitable combination of (1) presence of SARS-CoV-2 variants with 
increased transmissibility and (2) enforced restrictions. In particular, the mild 
restrictions that kept R0 around 0.9 with the original virus strain would keep it 
around 1.3 (at least) if the new variants increase transmissibility of at least 40–50%, 
as reported in the literature49–51. In fact, values around R0 = 1.3 were observed in 
mid-March 2021 in areas of Italy where the UK variant is becoming dominant. 
We have not considered even worse scenarios, because a higher R0 is unlikely to 
be sustainable: even stricter restrictions would then be enforced to prevent it from 
increasing. On the other hand, we deem it unlikely that restrictions so stringent 
to bring R0 below 0.9 would be enforced; hence, we have chosen this value as the 
other extreme scenario.

Our scenarios: intermittent strategies, Open–Close and Close–Open. In some 
of our scenarios, we consider intermittent strategies that rely on the alternation 
of Open phases (associated with a larger R0) and Close phases (associated with a 
smaller R0) with a fixed proportion.

One of our main results is that, when planning over a fixed time period and 
having to set the order of two phases (Open and Close) with fixed length, starting 
with the Close phase is always an advantage. This happens because the associated 
healthcare system costs depend on the total number of infection cases in the 
considered time period, which is much larger if the Open phase comes first; hence, 
starting with a Close phase drastically reduces health costs and losses. On the other 
hand, socioeconomic costs are proportional to the duration and stringency of the 
restrictions, regardless of when they are enforced; hence, intermittent closures yield 
similar socioeconomic costs. Given a finite horizon and Close/Open phases of 
fixed length, closing before opening does not bring any additional socioeconomic 
cost, with respect to opening before closing, because the closing (and opening) 
phases have the same duration in both scenarios.

This principle holds true irrespective of the initial size of the epidemic. For 
instance, with very low case numbers, starting with a Close phase could approach 
or even achieve eradication, after which reopening would be completely safe (such 
an eradication approach has been successfully adopted, for example, by New 
Zealand52,53), whereas, if starting with an Open phase, the number of infection 
cases would grow exponentially, and the following Close phase could only mitigate 
the epidemic expansion. Of course, the higher the initial case number, the more 
visible the difference between the two strategies.

Also, the principle (if Open and Close phases with a fixed proportion need 
to be alternated in a periodic fashion, then starting with a Close phase is always 
preferable) remains valid regardless of the phase duration. In our scenarios, we 
have chosen 1-month-long phases, because this is a frequently observed choice in 
many countries (for example, in accordance with implemented policies in Italy  
but also in Israel) and is a sufficiently long time for the effect of interventions to  
be well visible.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We gathered all epidemiological and demographic data from publicly available  
sources: https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento- 
nazionale, https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino- 
sorveglianza-integrata-COVID-19_13-gennaio-2021.pdf and http://dati.istat.it/
Index.aspx. Data are also included in Extended Data Figs. 1 and 9 and in the code 
folder: https://giuliagiordano.dii.unitn.it/docs/papers/VaccineVariantsCode.zip.

Code availability
The codes are available at https://giuliagiordano.dii.unitn.it/docs/papers/
VaccineVariantsCode.zip.
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Extended Data Fig. 1 | Epidemic evolution in Italy from late February 2020 to March 2021. Data (stars) and estimation (solid lines), based on the 
SIDARTHE model, of the time evolution of the epidemic, in logarithmic scale. Active cases (current diagnosed infected, related to the SIDARTHE variables 
R+T+D) are shown in orange; hospital occupancy (related to the SIDARTHE variables R+T) is shown in blue; ICU occupancy (related to variable T) is 
shown in magenta; daily deaths (related to the derivative of variable E) are shown in black.
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Extended Data Fig. 2 | Epidemic evolution without vaccination for different constant values of R0. Time evolution of the epidemic, in the absence of 
vaccination, when different constant values of R0, namely R0 = 1.27 (purple), R0 = 1.1 (orange), R0 = 0.9 (blue), are assumed, resulting from different 
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Extended Data Fig. 6 | Epidemic evolution with adaptive vaccination for different constant values of R0. Time evolution of the epidemic, with adaptive 
vaccination, when different constant values of R0, namely R0 = 1.27 (purple), R0 = 1.1 (orange), R0 = 0.9 (blue), are assumed, associated with 
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Extended Data Fig. 7 | Epidemic evolution with adaptive vaccination for different intermittent strategies. Time evolution of the epidemic, with adaptive 
vaccination, when different intermittent strategies are enforced, with an average value of R0 equal to 1.1. The Open-Close strategy (red) switches every 
month between R0 = 1.27 and R0 = 0.9, starting with R0 = 1.27. The Close-Open strategy (green) does the same, but starts with R0 = 0.9. The 
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