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Summary
Background Self-reported symptoms during the COVID-19 pandemic have been used to train artificial intelligence 
models to identify possible infection foci. To date, these models have only considered the culmination or peak of 
symptoms, which is not suitable for the early detection of infection. We aimed to estimate the probability of an 
individual being infected with SARS-CoV-2 on the basis of early self-reported symptoms to enable timely self-isolation 
and urgent testing.

Methods In this large-scale, prospective, epidemiological surveillance study, we used prospective, observational, 
longitudinal, self-reported data from participants in the UK on 19 symptoms over 3 days after symptoms onset and 
COVID-19 PCR test results extracted from the COVID-19 Symptom Study mobile phone app. We divided the study 
population into a training set (those who reported symptoms between April 29, 2020, and Oct 15, 2020) and a test set 
(those who reported symptoms between Oct 16, 2020, and Nov 30, 2020), and used three models to analyse the self-
reported symptoms: the UK’s National Health Service (NHS) algorithm, logistic regression, and the hierarchical 
Gaussian process model we designed to account for several important variables (eg, specific COVID-19 symptoms, 
comorbidities, and clinical information). Model performance to predict COVID-19 positivity was compared in terms 
of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the test set. For the 
hierarchical Gaussian process model, we also evaluated the relevance of symptoms in the early detection of COVID-19 
in population subgroups stratified according to occupation, sex, age, and body-mass index.

Findings The training set comprised 182 991 participants and the test set comprised 15 049 participants. When trained 
on 3 days of self-reported symptoms, the hierarchical Gaussian process model had a higher prediction AUC (0·80 
[95% CI 0·80–0·81]) than did the logistic regression model (0·74 [0·74–0·75]) and the NHS algorithm (0·67 
[0·67–0·67]). AUCs for all models increased with the number of days of self-reported symptoms, but were still high 
for the hierarchical Gaussian process model at day 1 (0·73 [95% CI 0·73–0·74]) and day 2 (0·79 [0·78–0·79]). At day 
3, the hierarchical Gaussian process model also had a significantly higher sensitivity, but a non-statistically lower 
specificity, than did the two other models. The hierarchical Gaussian process model also identified different sets of 
relevant features to detect COVID-19 between younger and older subgroups, and between health-care workers and 
non-health-care workers. When used during different pandemic periods, the model was robust to changes in 
populations.

Interpretation Early detection of SARS-CoV-2 infection is feasible with our model. Such early detection is crucial to 
contain the spread of COVID-19 and efficiently allocate medical resources.
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Introduction
COVID-19 is an acute respiratory illness caused by 
SARS-CoV-2.1 Between Dec 1, 2019, and June 10, 2021, 
this illness affected more than 175 million individuals 
worldwide, according to Worldometer. By Jan 31, 2021, 
the UK alone had recorded 38 163 patients requiring hos-
pitalisation for COVID-19 (Our World in Data). In such 

circumstances, health-care infrastructures suffer extra-
ordinary and overwhelming demand for resources and 
require fast, drastic rationing, which can easily result in 
poor outcomes (eg, long-term morbidity and death).2 The 
efficient allocation of resources is essential to manage 
the pandemic’s long-term effects, not only for the 
treatment of patients with COVID-19, but also for those 

For Worldometer see https://
www.worldometers.info/
coronavirus/

For Our World in Data see 
https://ourworldindata.org/
coronavirus
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with other critical medical conditions. At the time of 
writing, health-care infrastructures (eg, the UK’s National 
Health Service [NHS]) are facing enormous pressure in 
managing clinical resources as a high number of patients 
are in critical condition and require special care.2 This 
pressure could be reduced if the infection rate and the 
number of severe cases are decreased. One way to 
decrease the infection rate is via the timely detection of 
patients with COVID-19, through which the spread of 
disease can be contained while the evolution of symptoms 
can be treated.3–5 However, the widespread testing of the 
population and the iden tification of patients positive for 
COVID-19 are still difficult; laboratory professionals have 
faced a growing list of challenges as they have attempted 
to balance the need for increased test capacity with the 
maintenance of high-quality laboratory operations.4 
Furthermore, approaches used for diagnosing current 
infection, such as PCR, are highly dependent on the 
timing of sample collection and the type of sample 
acquired. Indeed, SARS-CoV-2 might not be detected by 
conventional PCR tests using samples obtained via upper 
respiratory tract swabs because viral presence in the 
upper respiratory tract decreases during the first week 
after symptom onset.4 Thus, as a complementary 
approach, identifying the combination of symptoms that 
enables early prediction of COVID-19 is essential. Such 
prediction could help to promote the timely testing of 
people with suspected SARS-CoV-2 infection.6–9

The COVID-19 Symptom Study app6 collects self-
reported, longitudinal information about the symptom 
profiles of patients with COVID-19 (confirmed by a PCR 
test). Machine learning approaches have been developed 
by use of the information collected from the COVID-19 

Symptom Study app6 to create diagnostic models and 
leverage the added value of big data to study new 
diseases such as COVID-19.7,10 Despite some promising 
results in identifying the main symptoms of COVID-19 
and their correlation to outcomes, most proposed 
models only use the information available at the time of 
maximum symptom intensity (defined as the peak of 
symptoms), and, hence, are not as conducive for early 
diagnosis.

To identify who is most likely to have COVID-19 on the 
basis of early symptoms, we aimed to create a Bayesian 
model that uses the 3 initial days of self-reported 
symptoms collected via the COVID-19 Symptom Study 
app.6 When optimised, the model will assign each 
participant who reports their daily symptoms with a 
likelihood of being COVID-19-positive. This information 
could then be used as a proxy for clinical diagnosis, 
signalising the individual for either a PCR test or self-
isolation while waiting for SARS-CoV-2 test results.

Methods
Data sources
The data used in this study are part of a prospective 
dataset acquired by use of the COVID-19 Symptom 
Study app: a mobile health application developed by 
ZOE (London, UK) in collaboration with scientists from 
King’s College London (London, UK) and Massachusetts 
General Hospital (Boston, MA, USA).6 The data source 
and study design have been previously described in 
detail in a validation study, which provided the basis for 
ethical approval of this study. Briefly, the COVID-19 
Symptom Study app collected self-reported data 
on 19  symptoms and COVID-19 PCR test results 

Research in context

Evidence before this study
Given the growth of surveillance platforms to investigate 
signs of SARS-CoV-2 infection and the progression of 
COVID-19, we designed a study to examine the early detection 
of this illness. We searched PubMed for peer-reviewed articles 
published in any language between Jan 1, 2020, and 
Jan 1, 2021, using the keywords “COVID-19” AND ([“mobile 
application”] OR [“web tool”] OR [“digital survey”] OR [“early 
detection”]). Of the 446 results, we found nine studies that 
used self-reported symptoms to predict signs of SARS-CoV-2 
infection. Among them, one study showed positive results in 
detecting COVID-19 in a general population on a national 
level. However, none of the studies showed evidence of the 
early detection (eg, in the first 3 days) of COVID-19; most 
focused on the detection of COVID-19 during the peak of 
symptoms. Furthermore, none of the studies sought to 
provide comparisons with current diagnostic criteria used by 
health-care services, showing the added value of artificial 
intelligence technologies to model the early signs of the 
disease explicitly.

Added value of this study
This study represents a novel effort to identify and refer 
individuals for COVID-19 testing, enabling a more efficient 
allocation of medical resources during crucial stages of a 
pandemic. Our results suggest that a hierarchical Gaussian 
process model is effective in predicting SARS-CoV-2 infection 
when earlier symptoms are considered. Furthermore, this study 
used a uniquely large dataset comprising a prospective, 
community-based cohort. The longitudinal information 
provided by the participants also allowed the temporal 
assessment of the different symptoms collected.

Implications of all the available evidence
Our findings show the value of artificial intelligence in 
modelling COVID-19 symptoms and in the timely detection of 
SARS-CoV-2 infections. Such a model would enable the 
prompt self-isolation of individuals with suspected COVID-19 
and referral for urgent testing, enabling better allocation of 
medical resources during an evolving pandemic, particularly 
during chaotic periods.

For more on the data source and 
study design see https://

clinicaltrials.gov/ct2/show/
NCT04331509

https://clinicaltrials.gov/ct2/show/NCT04331509
https://clinicaltrials.gov/ct2/show/NCT04331509
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(appendix p 1). For the purposes of this research, we 
used 18 of these self-reported symptoms, excluding red 
welts on the face and lips due to possible confounding 
assessments for this symptom, and the study population 
was limited to participants in the UK. The app and the 
COVID-19 Symptom Study were approved by King’s 
College London’s ethics committee (Research Ethics 
Management Application System number 18210; review 
reference LRS-19/20–18210) and all app users provided 
informed digital consent for use of their data in 
COVID-19 research.

From the data acquired by the mobile app, we 
extracted a subset of longitudinal information for 3 days 
of self-reported symptoms after symptom onset. 
Symptoms encoding and description are available in 
the appendix (pp 1–2). All samples with invalid data 
entries or incomplete information were excluded from 
this study. The resulting dataset included a total of 
182 991 samples (participants) who reported symp-
toms between April 29, 2020, and Oct 15, 2020 (the 
training set), and an additional population comprising 
15 049 participants who recorded their symptoms 
between Oct 16, 2020, and Nov 30, 2020 (the test set). All 
participants were labelled according to their self-reported 
PCR test results as being either positive or negative for 
SARS-CoV-2 infection, which was then used as the 
diagnostic criteria for both model training and evaluation. 
To compensate for dataset imbalance in the number of 
positive versus negative cases during training, we 
implemented a bootstrapping scheme to increase the 
proportion of SARS-CoV-2-positive participants in the 
training set from the initial 2% to 5%. We used five 
bootstrapping folds on the training set to train the 
models in a subsample of 80% of the set; the remaining 
20% were used for testing.

Data analysis and models definitions
We used three approaches to analyse the self-reported 
symptoms. The three approaches differ according to the 
number of symptoms considered as relevant to diagnose 
COVID-19 and in their temporal encoding. The first 
method mimics the standard approach implemented by 
the UK’s NHS for triage and test referencing.11 This 
method, hereafter referred to as the NHS algorithm, 
considers all individuals reporting either cough, fever, or 
loss of smell in any of the days in a time window (varying 
from 1 day to 3 days in our study) as potentially being 
infected with SARS-CoV-2.

The second approach identifies patients with COVID-19 
on the basis of a symptomatic profile accumulated over 
time of a subset of symptoms (ie, loss of smell, persistent 
cough, fatigue, and skipped meals), which were previously 
validated to detect COVID-19,7 and demographic infor-
mation by use of a logistic regression model proposed by 
Menni and colleagues.7 Further details regarding model 
definitions and implementation are available in the 
appendix (p 5).

For the third approach, we designed a Bayesian 
framework to model the relationship between self-
reported symptoms, comor bidities (eg, diabetes, kidney 
disease, heart disease, and lung disease), and an 
individual’s COVID-19 status. 18 self-reported symp toms 
were used by this model. We also included demographic 
information as covariates in the model, namely age, sex, 
body-mass index (BMI), occupation according to SARS-
CoV-2 exposure (health-care workers vs non-health-care 
workers), and the risk of contact with infected patients for 
health-care workers during the COVID-19 pandemic; 
further details can be found in the appendix (pp 5–6). 
Bayesian frameworks, such as the Gaussian process, are 
particularly useful to study SARS-CoV-2 infection, as they 
allow robust modelling even in highly uncertain or 
incomplete datasets, such as medical datasets.12 Unlike 
the previous two models, the proposed model, defined as 
a hierarchical Gaussian process model (appendix pp 5–6), 
encodes both the correlation between symptoms across 
participants and the correlation between timepoints 
(temporal evolu tions), considering the prevalence ratio of 
COVID-19 associated with the geographical area where 
participants reside.13 Furthermore, our hierarchical 
Gaussian process model encodes the ordering of 
symptoms as a time-series sequence across the different 
participants, and within participants across timepoints 
(appendix pp 5–6).

The hierarchical Gaussian process model was 
optimised by use of the open-source software GPflow, 
version 2.2,14 and TensorFlow, version 2.0. Both the 
logistic regression model and the NHS algorithm were 
developed by use of Python, version 3.7. The study 
design and data are registered in ClinicalTrials.gov, 
NCT04331509.

Power of the models to predict COVID-19 positivity 
The prediction of SARS-CoV-2 infection was obtained 
independently for the three models considered. The NHS 
algorithm and the logistic regression models were 
evaluated by use of the sum of the maximum values of 
the symptoms reported by participants across time for 
the test population (most were binary encoded; appendix 
p 1). Conversely, the results for the hierarchical Gaussian 
process model were computed independently for each 
timepoint. All models were compared in terms of 
sensitivity, specificity, and area under the receiver 
operating characteristic curve (AUC) in the test set. Three 
thresholds were considered to define positive cases from 
the likelihood of predictions to maximise the sensitivity 
(denoted as high sensitivity), specificity (denoted as high 
specificity), and optimal threshold (which balances 
sensitivity and specificity), defined by Youden’s J 
statistic.15 The optimisation of predictive thresholds was 
done on the training set and subsequently applied to the 
testing set.

The differences in performance across the three models 
were assessed by use of a Mann–Whitney U test, with 

See Online for appendix

For more on TensorFlow see 
https://www.tensorflow.org/

https://www.tensorflow.org/
https://www.tensorflow.org/
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significance levels of 95% and 99% (not reported). A 
multiple com parison correction was done for the 3 days 
of self-reported symptoms.

We further planned to analyse the sensitivity, specificity, 
and AUC (using the optimal threshold) of the best 
performing model when trained in subgroups of the 
population stratified according to occupation (health-care 
worker vs non-health-care worker), sex (female vs male), 
age (16–39 years vs 40–59 years vs 60–79 years vs 
≥80 years), and BMI (underweight [<18·5 kg/m²] vs 
healthy weight [18·5–24·9 kg/m²] vs overweight 
[25·0–29·9 kg/m²] vs obese [≥30·0 kg/m²]).

Stratification of feature relevance in population 
subgroups
Feature (symptom) relevance was extracted from the 
optimised hierarchical Gaussian process model as a 
surrogate metric to identify the most relevant 
symptoms indicating early signs of COVID-19 in 
different population subgroups and to assess the 
relevance to COVID-19 status prediction of self-
reported comorbidities. As defined in the clinical trial 
experimental setup, we considered the same four 
subgroups as in our performance analysis, stratified 
according to occupation, sex, age, and BMI. To more 
easily analyse the relevance of different symptoms, we 
grouped them into four groups according to their 
clinical manifestations: (1) gastro intestinal symptoms 
and other symptoms; (2) flu-like symp toms; (3) neurol-
ogical symptoms; and (4) cardiac and respiratory 
symptoms (appendix p 1). This symptom grouping was 
a post-processing step that facilitated results inter-
pretation, and did not influence model performance. 
Stratification of feature relevance was obtained by 
optimising the prediction model in these subgroups of 
the population (appendix pp 3–4). We used a Kruskal–
Wallis test with Bonferroni correction to assess 
statistical differences in the distribution of symptom 
relevance across population groups. The weights for 
each feature were normalised between 0 and 1 using 
the maximum value of the weights of the features 
across the subgroups.

Confidence of label prediction
Given the Bayesian nature of the hierarchical Gaussian 
process model, we further analysed the uncertainty of the 
predicted labels (ie, positive or negative for SARS-CoV-2 
infection) using the likelihood of the correctly labelled 
classes to understand how confident the model was in 
predicting COVID-19 positivity among age, sex, 
occupation, and BMI subgroups (appendix p 9). 

Role of the funding source
The funders of the study had no role in study design, 
data analysis, data interpretation, or writing of the report. 
ZOE participated in data acquisition and no other 
funders participated in data collection.

Results
We included 182 991 participants in the training set and 
15 049 participants in the test set. The two populations 
had similar symptom distributions (appendix p 2) and 
demographics (table 1), and were completely independent.  
A detailed description of the population stratified into age 
and BMI subgroups is available in the appendix (pp 3–4).

The ability to predict the COVID-19 test result after a 
maximum of 3 days of self-reported symptoms was 
assessed via the sensitivity, specificity, and AUC of the 
three models (table 2). The model was trained with data 
from April 29, 2020, to Oct 15, 2020, and tested with data 
from Oct 16, 2020, to Nov 30, 2020, and appeared robust 
to changes in the underlying pandemic periods (table 2). 
The hierarchical Gaussian process model showed the 
highest prediction AUC, which increased with the 
number of days of self-reported symptoms (0·73 
[95% CI 0·73–0·74] for 1 day, 0·79 [0·78–0·79] for 2 days, 
and 0·80 [0·80–0·81] for 3 days; appendix p 7). These 
results suggest that the model performed better when 
using information about the temporal evolution of 
symptoms. Nevertheless, sensitivity was similar across 
the three timepoints for the hierarchical Gaussian 
process model, whereas specificity benefited from the 
temporal information, increasing with the number of 
days of self-reported symptoms (table 2).

When used to predict signs of infection during 3 days 
of self-reported symptoms, the logistic regression 
model had a lower AUC than did the hierarchical 
Gaussian process model, but had a higher AUC than 
did the NHS algorithm (table 2). Across all timepoints, 
the logistic regression model had signifi cantly lower 
sensitivity than did the hierarchical Gaussian process 
model, when considering the optimal threshold 
(table 2). Additionally, the logistic regression model had 
a non-statistically significant lower sensitivity than did 
the NHS algorithm model when using a window of 
3 days of self-reported symptoms. For 3 days of self-
reported symptoms, the specificity of the hierarchical 
Gaussian process model was numerically lower than 
the specificity of the NHS algorithm or the logistic 
regression model (table 2).

Only the hierarchical Gaussian process model was 
used in sensitivity and specificity subgroup analyses 
because it outperformed the other two models. In these 
subgroup analyses, the AUCs were similar across the 
first three age groups (16–39 years, 40–59 years, and 
60–79 years), and were similar to that observed in the 
unstratified test set, but were smaller than the AUCs in 
individuals 80 years or older (appendix p 7). The mean 
sensitivities and specificities for participants aged 
16–39 years had high SDs across all timepoints, 
suggesting that, despite its good performance, our model 
is less robust in iden tifying SARS-CoV-2-positive 
individuals in the younger population than in the older 
population (appendix p 7). For those 80 years or older, the 
model was accurate for detecting COVID-19, with low 

For more on the clinical trial 
experimental setup see 

https://clinicaltrials.gov/ct2/
show/NCT04331509
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SDs for sensitivity and specificity for 2 days and 3 days of 
self-reported symptoms (appendix p 7). For 3 days of self-
reported symptoms, sensitivity was 79% and specificity 

was 63% for those aged 60–79 years, and sensitivity 
was 100% and specificity was 89% for those 80 years or 
older (appendix p 7).

SARS-CoV-2-positive SARS-CoV-2-negative 

1 day 2 days 3 days 1 day 2 days 3 days

Number* 

Training set 1965 (1·3%) 1057 (1·7%) 997 (1·9%) 144 490 (98·7%) 60 114 (98·3%) 52 532 (98·1%)

Testing set 1158 (7·7%) 752 (11·1%) 679 (13·3%) 13 891 (92·3%) 5993 (88·9%) 4439 (86·7%)

Sex†

Male

Training set 537 (27·3%) 276 (26·1%) 262 (26·3%) 36 601 (25·3%) 13 889 (23·1%) 11 901 (22·7%)

Testing set 334 (28·8%) 211 (28·1%) 193 (28·4%) 3422 (24·6%) 1342 (22·4%) 1001 (22·6%)

Female

Training set 1428 (72·7%) 781 (73·9%) 735 (73·7%) 107 889 (74·7%) 46 225 (76·9%) 40 631 (77·3%)

Testing set 824 (71·2%) 541 (71·9%) 486 (71·6%) 10 469 (75·4%) 4651 (77·6%) 3438 (77·4%)

Age, years

Training set 46·7 (14·3) 46·9 (14·3) 46·5 (14·2) 49·3 (13·2) 49·4 (13·0) 49·6 (12·8)

Testing set 50·3 (12·7) 50·0 (12·5) 50·0 (12·6) 50·8 (12·8) 51·2 (12·6) 51·2 (12·5)

BMI, kg/m²

Training set 27·4 (6·9) 27·4 (6·8) 27·4 (6·8) 27·2 (7·0) 27·1 (6·9) 27·2 (6·9)

Testing set 27·8 (7·0) 27·9 (7·2) 27·7 (7·1) 27·1 (6·9) 27·0 (6·8) 27·1 (6·9)

Health-care workers†

Training set 189 (9·6%) 125 (11·8%) 113 (11·3%) 7045 (4·9%) 2985 (5·0%) 2463 (4·7%)

Testing set 48 (4·1%) 32 (4·3%) 30 (4·4%) 649 (4·7%) 266 (4·4%) 179 (4·0%)

Data are n (%) or mean (SD). Data are stratified by the number of days after symptom onset. BMI=body-mass index. *Denominators are the total number of participants in 
each set for each day. †Denominators are the training or testing set numbers of participants who are either positive or negative for SARS-CoV-2 each individual day (the first 
two rows). 

Table 1: Demographic information of the study population

Sensitivity Specificity AUC

High sensitivity High specificity Optimal 
threshold

High sensitivity High specificity Optimal 
threshold

1 day

Logistic regression 0·87 (0·02; 
0·85–0·89)*

0·29 (0·02; 
0·27–0·30)*

0·43 (0·06; 
0·40–0·49)*

0·22 (0·03; 
0·19–0·24)

0·89 (<0·01; 
0·89–0·89)*

0·77 (0·05; 
0·73–0·81)*

0·64 (0·01; 
0·63–0·65)*

Hierarchical Gaussian 
process

0·95 (0·01; 
0·94–0·95)*

0·49 (0·04; 
0·46–0·53)*

0·76 (0·06; 
0·71–0·80)*

0·16 (0·02; 
0·15–0·20)

0·83 (0·02; 
0·81–0·85)*

0·57 (0·08; 
0·51–0·64)*

0·73 (<0·01; 
0·73–0·74)*

2 days

Logistic regression 0·91 (0·01; 
0·90–0·92)*

0·34 (0·01; 
0·33–0·35)*

0·58 (0·06; 
0·52–0·63)*

0·24 (0·03; 
0·21–0·27)

0·90 (0·01; 
0·90–0·91)*

0·73 (0·06; 
0·68–0·79)

0·71 (0·01; 
0·70–0·71)*

Hierarchical Gaussian 
process

0·94 (0·01; 
0·93–0·95)*

0·57 (0·04; 
0·54–0·59)*

0·75 (0·04; 
0·72–0·78)*

0·29 (0·03; 
0·27–0·31)

0·84 (0·01; 
0·83–0·86)*

0·68 (0·04; 
0·64–0·71)

0·79 (<0·01; 
0·78–0·79)*

3 days

NHS algorithm ·· ·· 0·60 (0·02; 
0·58–0·62)†‡

·· ·· 0·75 (<0·01; 
0·75–0·75) 

0·67 (<0·01; 
0·67–0·67)†§

Logistic regression 0·91 (0·03; 
0·88–0·94)

0·36 (0·02; 
0·34–0·37)†

0·59 (0·06; 
0·54–0·65)†

0·31 (0·04; 
0·26–0·33)

0·91 (0·01; 
0·90–0·91)†

0·76 (0·06; 
0·71–0·81)

0·74 (0·01; 
0·74–0·75)†

Hierarchical Gaussian 
process

0·95 (0·01; 
0·93–0·95)

0·59 (0·03; 
0·57–0·61)†

0·73 (0·05; 
0·69–0·77)†

0·31 (0·04; 
0·28–0·35)

0·85 (0·01; 
0·84–0·86)†

0·72 (0·02; 
0·70–0·73)

0·80 (<0·01; 
0·80–0·81)†

Data are mean (SD; 95% CI). For the NHS algorithm, symptoms could be recorded on any of the 3 days. A Mann–Whitney U test was used to assess statistical significance. 
AUC=area under the receiver operating characteristic curve. NHS=National Health Service. *p<0·01. †p<0·05. ‡Statistically different from the hierarchical Gaussian process 
model. §Statistically different from the hierarchical Gaussian process model and the logistic regression model proposed by Menni and colleagues.7 

Table 2: Overall performance metrics in the test set
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Model performance was also analysed in BMI sub-
groups (appendix p 8). Because of the small sample size 
of people with overweight or obesity in the test set 
(appendix p 4), we merged the two groups for the 
sensitivity and specificity analyses. The model’s 
performance was similar across the BMI subgroups to 
that in the unstratified test set, with the exception of the 
underweight subgroup, in whom the model had a lower 
AUC for 3 days of self-reported symptoms (0·74 [95% CI 
0·73–0·75]). The underweight subgroup also had a 
higher rate of false negatives than did the healthy 
weight subgroup and the newly formed overweight and 
obese subgroup, which translated into a sensitivity 
of 59% after 3 days of symptoms (appendix p 8). 
Stratifica tion by sex, however, revealed no differences in 
model performance for the detection of COVID-19 
(appendix p 8).

In a subgroup analysis based on occupation (health-
care workers, who are at greater risk of infection,16 vs non-
health-care workers), our model had a higher predictive 
power to predict COVID-19 positivity for non-health-care 
workers (AUC 0·81 [95% CI 0·80–0·81]), with a 
sensitivity of 76%, than it had for health-care workers 
(0·76 [0·74–0·78]), with a sensitivity of 63%, after 3 days 
of self-reported symptoms (appendix p 8). The higher 
SDs for the health-care worker metrics compared with 
the non-health-care worker metrics across folds 
highlights the low robustness of the model when used 
for health-care workers (appendix p 8).

We assessed feature relevance of self-reported 
symptoms and comorbidities in the COVID-19 prediction 
(appendix p 9). The most relevant symptoms to detect 
COVID-19 among the unstratified test set were, ordered 
by relevance, loss of smell, chest pain, persistent cough, 
shortness of breath, abdominal pain, blisters on the feet, 
eye soreness, and unusual muscle pain (appendix p 9). 
The comorbidities that showed the highest relevance to 
the detection of COVID-19 were heart disease, followed 
by kidney disease, and lung disease (appendix p 9). These 
comorbidities did not directly influence the detection of 
COVID-19, but did impact on the relevance of the 
symptoms for early diagnosis (appendix pp 5–6).

We further analysed feature relevance according to 
different population subgroups (appendix p 6), also 
grouping symptoms into the four different groups of 
symptoms (appendix p 1). For both health-care workers 
and non-health-care workers, loss of smell was the most 
relevant feature for early diagnosis of COVID-19 (figure 1). 
However, symptoms used by the model to identify 
COVID-19 were significantly different in these two 
populations (p=0·029). Health-care workers presented 
with chills or shivers, persistent cough, headache, and 
chest pain as highly relevant symptoms, followed by 
unusual muscle pain, diarrhoea, fatigue, and skipped 
meals. Chest pain and persistent cough were symptoms 
(in addition to loss of smell) that were highly relevant for 
the detection of COVID-19 in non-health-care workers 

(figure 1). Blisters on the feet were relevant to the 
prediction of COVID-19 for non-health-care workers, 
despite not being a direct sign of infection (figure 1).7,11,17–19

The distribution of symptom relevance was not 
different between the sexes (p=0·95), but shortness of 
breath, fatigue, and chills or shivers were more relevant 
features in the detection of COVID-19 for men than for 
women (figure 2). For both sexes, the prediction of a 
positive COVID-19 test was highly influenced by loss of 
smell, chest pain, and abdominal pain (figure 2).

For participants aged 16–39 years, loss of smell, chest 
pain, abdominal pain, shortness of breath, and eye 
soreness were the most relevant symptoms during the 
initial 3 days of self-reporting (figure 3). We identified 
significant differences in the relevance of all symptoms 
between the 40–59 years age group and the 60–79 years age 
group (p=0·0038), and between the 40–59 years age 
group and the 80 years or older age group (p=0·0040; 
figure 3), but not between any other age groups. For 
individuals aged 40–59 years, persistent cough had a 
higher relevance to detect COVID-19 and chills or shivers 
had a lower relevance to detect COVID-19 compared with 
individuals 80 years or older. As participant age increased 
to 60 years or older, loss of smell began to lose relevance, 
and, for participants 80 years or older, loss of smell was 
not the most relevant feature in the detection of 
COVID-19 (figure 3). Specifically, for individuals aged 
60–79 years, chest pain, unusual muscle pain, shortness 
of breath, and loss of smell were the most relevant 
features, whereas, for participants 80 years or older, 
diarrhoea, sore throat, chest pain, unusual muscle pain, 
eye soreness, and chills or shivers were the most relevant 
symptoms (figure 3).

Loss of smell was consistently relevant for all BMI 
groups (figure 4). We did not identify any significant 
differences in the distribution of symptom relevance 
across the BMI groups (p>0·0041). Patients who were 
underweight did not show a specific, distinctive pattern 
of relevant symptoms to detect COVID-19, with only a 
high relevance for loss of smell and chest pain (figure 4). 
Conversely, for those with a healthy BMI, our model 
designated loss of smell, chest pain, shortness of breath, 
chills or shivers, skipped meals, unusual muscle pain, 
diarrhoea, and nausea as relevant features. Loss of smell, 
chest pain, shortness of breath, eye soreness, abdominal 
pain, persistent cough, fever, chills or shivers, and 
blisters on the feet were relevant for participants with 
overweight, whereas abdominal pain, shortness of 
breath, diarrhoea, unusual muscle pain, and loss of smell 
were relevant in the detection of COVID-19 among 
participants with obesity (figure 4). The uncertainty of 
label prediction was computed to understand how 
confident the model was in predicting COVID-19 
positivity for age, sex, occupation, and BMI subgroups. A 
wider window of symptoms (3 days) led to more certain 
predictions for all age groups, except for patients aged 
40–59 years (appendix pp 9, 11).There was no difference 
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between the sexes in the confidence of label predictions 
(appendix pp 9–10). The predicted label was less confident 
for health-care workers than for non-health-care workers, 
even when using 3 days of self-reported symptoms 
(appendix pp 9–10). The model showed a generally high 
certainty of predictions across BMI subgroups, although 
participants in the underweight and obese  subgroups 
(compared with the healthy weight and overweight 
subgroups) were predicted as COVID-19-positive with 
lower certainty; for participants with obesity, there was a 
decrease in the certainty of predictions with an increase 
in the number of days of self-reported symptoms 
(appendix pp 9, 12).

Discussion
The early detection of COVID-19 is helpful for resource 
allocation during the pandemic. Here, we have proposed 
a Bayesian approach to identify individuals with probable 
COVID-19 on the basis of self-reported symptoms 
during 1, 2, and 3 days after symptom onset and 
demographic information. Using a unique, prospective 
dataset, we evaluated the proposed method by analysing 
its ability to predict COVID-19 in the early stages of 
infection, identify sets of symptoms that can be used to 
characterise early signs of infection in subgroups of the 
population, and consider the certainty of estimations for 
the model predictions to be used to direct people for 

Figure 1: Feature relevance by occupation 
Symptoms are grouped according to their clinical manifestations: gastrointestinal 
symptoms and other symptoms (yellow sector), flu-like symptoms (green sector), 
neurological symptoms (purple sector), and cardiac and respiratory symptoms 
(white sector). The grey line represents overall symptom relevance without 
stratification. Points further from the centre correspond to a higher relevance. 
Relevance is normalised for direct interpretation. 
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Figure 2: Feature relevance by sex 
Symptoms are grouped according to their clinical manifestations: gastrointestinal 
symptoms and other symptoms (yellow sector), flu-like symptoms (green sector), 
neurological symptoms (purple sector), and cardiac and respiratory symptoms 
(white sector). The grey line represents overall symptom relevance without 
stratification. Points further from the centre correspond to a higher relevance. 
Relevance is normalised for direct interpretation. 
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testing, self-isolation, or both. This early diagnosis could 
then lead to better allocation of medical resources when 
the health-care system is severely strained by the 
pandemic. The proposed approach was compared with 
the methods currently used by the NHS and by related 
studies. 7,9,20 Our model was effective in the identification 
of COVID-19 after 3 days of symptoms (AUC 0·80), with 
a mean sensitivity of 0·73 (SD 0·05) and a mean 
specificity of 0·72 (SD 0·02). Nevertheless, the model 
was hampered by the bias of data acquisition and 
requires further validation with external datasets. When 
compared with the other state-of-the-art diagnostic 
algorithms,7,9 our proposed approach showed signifi-
cantly better predictive accuracy and sensitivity. By 
analysing predictive AUC, sensitivity, and specificity in 
subgroups, we conclude that our model can be 
particularly relevant in the detection of early signs of 

COVID-19 for certain groups of the population, such as 
older patients. Conversely, our proposed model was less 
accurate in the detection of COVID-19 among health-
care workers compared with non-health-care workers.

We identified loss of smell, chest pain, persistent 
cough, abdominal pain, blisters on the feet, eye soreness, 
and unusual muscle pain as the most relevant fea-
tures indicating early signs of COVID-19.7,9,10,17–19 From a 
previous study7 on patients symptomatic for COVID-19, 
skipped meals and fever were highlighted as relevant 
symptoms in the identification of COVID-19.9–11,20 
However, our analysis showed that these features were 
not relevant to early disease in the unstratified population, 
and so skipped meals and fever should not be considered 
as first-line symptoms indicating that patients should 
have a COVID-19 test or self-isolate. In addition, among 
the comorbidities reported by the participants in our 

Figure 3: Feature relevance by age group
Symptoms are grouped according to their clinical manifestations: gastrointestinal symptoms and other symptoms (yellow sector), flu-like symptoms (green sector), 
neurological symptoms (purple sector), and cardiac and respiratory symptoms (white sector). The grey line represents overall symptom relevance without 
stratification. Points further from the centre correspond to a higher relevance. Relevance is normalised for direct interpretation.
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study, heart disease was the most relevant to the 
predictions. Although patients’ comorbidities did not 
directly affect the outcome of the model, they were 
included in the model as conditional variables. Therefore, 
the symptoms of COVID-19 reported by individuals with 
previous heart conditions should be further investigated 
and differentiated from the symptoms reported by the 
general population.

Using a hierarchical Gaussian process model, we 
further investigated the early signs of infection in 
subgroups of the population. Our initial results suggested 
that health-care workers showed distinctive features 
compared with non-health-care workers. For both 
groups, loss of smell was the most relevant feature for 
early diagnosis of COVID-19, but fatigue, headache, 
skipped meals, and unusual muscle pain were more 

relevant to health-care workers than to non-health-care 
workers.16 We believe that the workload faced by health-
care workers during the pandemic increases both their 
exposure to the virus and their stress levels, which could 
explain the relevance of such symptoms; symp toms 
related to long-term stress could potentially lead to 
psychological symptoms that are translated as fatigue.16,21,22 
Similarly, the unusual muscle pain could also be 
explained by long work periods in health-care settings 
and the physical demand of caretaking during the 
pandemic.16,22 Our model also had a lower predictive 
power for health-care workers (AUC 0·76; 63% sensitivity) 
than it had for non-health-care workers (AUC 0·81; 
76% sensitivity) after 3 days of self-reported symptoms. 
This result could be explained by the differences between 
these groups in feature relevance and the possibility that 

Figure 4: Feature relevance by BMI category
Symptoms are grouped according to their clinical manifestations: gastrointestinal symptoms and other symptoms (yellow sector), flu-like symptoms (green sector), 
neurological symptoms (purple sector), and cardiac and respiratory symptoms (white sector). The grey line represents overall symptom relevance without 
stratification. Points further from the centre correspond to a higher relevance. Relevance is normalised for direct interpretation. BMI=body-mass index.
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health-care workers experience and report symptoms in 
a different way to non-health-care workers. We think that 
current studies investigating COVID-19 symp toms could 
benefit from a personalised model incorporating, and 
trained using, participants’ occupations.

By stratifying the relevance of symptoms per age group, 
we showed that early symptoms reported by participants 
from some different age groups varied.23 We found that 
loss of smell, a symptom that is being widely used to 
detect COVID-19, begins to lose relevance for people 
older than 60 years and is not a relevant feature for 
individuals 80 years or older. These new results suggest 
that the detection of early signs of COVID-19 could 
benefit from personalised models that factor in the age 
group of participants. The differences in feature relevance 
could also be explained by the small number of people in 
the age groups used, specifically older people who might 
be less prone to register their symptoms regularly, and 
fewer evident and aggressive symptoms in younger 
participants than in older participants.24,25 Therefore, 
future research should focus on the development of sub-
models targeting the specificities of the age subgroups 
that showed signifi cantly different features. Nevertheless, 
the prediction of COVID-19 diagnosis across all the age 
groups had a consistently high certainty.

Despite the differences in prognosis and mortality 
for both sexes,26 we did not find any differences in the 
early signs of infection across sexes.

Our model’s performance was similar across the BMI 
subgroups to that in the unstratified test set, with the 
exception of the underweight subgroup, in whom the 
model had a lower AUC for 3 days of self-reported 
symptoms. However, our model had highly uncertain 
predictions for patients with obesity, with a decrease in 
the likelihood of the predictions with an increase in the 
number of timepoints. This result could partly be 
explained by other underlying medical con ditions of 
participants with overweight that could hamper the 
correct assessment of early signs of infection. The 
number of participants with obesity in our study 
population was lower than the number of participants in 
any other BMI category, which compromised the ability 
of our model to correctly describe the early signs of 
infection in this subpopulation.

Our study had several strengths. First, it is unique; to 
our knowledge, this study was the first to attempt to 
detect early signs of COVID-19 using self-reported 
symptoms. Second, the models presented in this study 
were trained on a large population of 182 991 participants 
and subsequently validated on a fully independent sample 
of 15 049 individuals. Therefore, the sample size of our 
data supports the generalisability and robustness of our 
approach. The heterogeneity in the demographics of 
included individuals and the broad spectrum of 
symptoms reported also resulted in a generalisable 
model. Third, the prospective nature of symptoms 
logging in this study will potentially allow us to change 

the model design and further improve the proposed 
approach. We could then develop personalised models 
according to various population strata, such as age groups 
and occupation, and validate them in future analyses. 
Fourth, our proposed approach has a temporal 
component, which did not require the concatenation of 
symptoms across timepoints. This aspect ensured that 
the sequential presentation of symptoms was not 
neglected, while predicted labels of participants with a 
different number of timepoints were still generated. 
Finally, the information regarding the uncertainty of the 
predicted labels for each subpopulation can also be used 
as a surrogate measure of the likelihood of an individual 
to be positive for SARS-CoV-2 across the different 
timepoints, a major advantage when used in real-life 
scenarios.

Our study also had limitations. First, the self-reporting 
nature of the data, particularly the symptoms, could 
have negatively affected the performance of the models. 
Given that the models rely on prospective data collection 
to work, it was necessary that the participants recalled 
the exact symptom trajectory of their first 3 days and the 
symptoms onset, which might not have always been 
possible. The symptoms reported might also have been 
overestimated, both in intensity and time, by the 
participants. Furthermore, the absence of clinical scales 
for symptoms reporting and assessment can impact 
the understanding and translation of the symptoms 
profile into the clinical environment. These factors can 
compromise the models’ performance, limiting their 
use as clinical tools. To overcome these limitations, 
complementary measurements obtained by wearable 
sensors and devices could be included as features. In 
fact, such devices have proven successful as clinical 
proxies of participants’ conditions and are viable 
solutions in assessing and validating self-reported 
symptoms.27,28

Second, because of the method used for data acquisi-
tion—the mobile phone app—the study population was 
also skewed towards a younger population. Therefore, the 
translation of the proposed approach to other popula tions 
will require a detailed analysis of the participants’ 
demographics. Nevertheless, thanks to the flexibility and 
the non-parametric nature of our model, we believe that 
model performance will not be negatively impacted, even 
if the relevant features change.

Third, the assessment of symptoms relevance could 
have potentially been impacted by the sample size of 
the different population strata. To reduce the effect of 
small samples sizes, we reduced the granularity of the 
BMI subgroups. We addressed these limitations by 
doing an extensive validation on an independent sample, 
which included a bootstrapping scheme to reduce 
sample bias and compensate for different symptom 
prevalence across individuals and population strata.

Fourth, all the analyses presented in this study 
were done on the UK population, hence limiting the 



Articles

www.thelancet.com/digital-health   Published online July 29, 2021   https://doi.org/10.1016/S2589-7500(21)00131-X 11

generalisability of our conclusions, as features of the 
study population can differ between countries. In fact, 
some of the population features considered for model 
estimation, namely obesity rates, age, comorbidities, and 
infection risk for health-care workers during the 
pandemic, could vary strongly between countries, 
including several low-income and middle-income 
countries.29,30 Also, we did not do any specific analysis 
considering the ethnicity of the participants as a possible 
covariate in the model or confounding effect. Future 
work should focus on the validation of the proposed 
approach on different populations with different 
demographic features.

Finally, the guidelines for testing according to the 
available resources can be considered another key 
limitation of this study. Given that the likelihood of being 
offered a test in the UK is strongly dependent on the 
symptoms used for reference by the NHS,11 an individual’s 
occupation being considered among other factors, the 
outcome of the test itself can be biased. Similarly, different 
actions for the mitigation of COVID-19 across countries 
could also impact the manifestation of the disease and the 
test used as a reference to define SARS-CoV-2 positivity.

Early detection of SARS-CoV-2-infected individuals is 
crucial to contain the spread of the COVID-19 pandemic 
and efficiently allocate medical resources. In this study, 
we proposed a tailored hierarchical Gaussian process 
model to predict the early signs of infection using self-
reported symptoms. This model allows us to refer 
individuals for testing and self-isolation even when only 
early symptoms are observed. In the future, our proposed 
model can integrate additional features, such as clinically 
relevant measures, to improve and reduce the bias 
associated with self-reported inputs.
Contributors
LSC, CHS, JCP, TS, CJS, SO, and MM contributed to study concept and 
design. CHS, JCP, LP, BM, DAD, ATC, JW, TS, CJS, and SO contributed 
to data acquisition. LSC, JCP, and LP contributed to data analysis and 
accessed and verified the underlying data. LSC and MM contributed to 
the initial drafting of the manuscript. All authors contributed to data 
interpretation and critical revision of the manuscript. CJS, SO, and 
MM contributed to study supervision. EM, MSG, KK, MA, SB, RD, and 
LHN contributed to the discussion of the results and reviewed the data 
and the final manuscript. All authors had full access to all the data in the 
study and had final responsibility for the decision to submit for 
publication.

Declaration of interests
ATC reports personal fees from Pfizer, Bayer Pharma, and Boehringer 
Ingelheim, outside the submitted work. CJS reports grants from the 
Chronic Disease Research Foundation, during the conduct of the study. 
JCP, LP, JW, and TS report other (work) and consultancy from ZOE, 
during the conduct of the study. CHS reports grants from the 
Alzheimer’s Society, during the conduct of the study. DAD reports 
grants from the National Institutes of Health during the conduct of the 
study and has previously served as a co-investigator on an unrelated 
trial supported by ZOE. RD reports grants from the Department of 
Health and Social Care, during the conduct of the study, and personal 
fees from ZOE, outside the submitted work. SO reports grants from 
the Wellcome Trust, Innovate UK Research and Innovation, and the 
Chronic Disease Research Foundation, during the conduct of the study. 
All other authors declare no competing interests. 

Data sharing
Data collected in the COVID-19 Symptom Study smartphone app are 
being shared with other health researchers through the NHS-funded 
Health Data Research UK and Secure Anonymised Information Linkage 
consortium, housed in the UK Secure Research Platform (Swansea, UK). 
Anonymised data are available to be shared with researchers (with no 
date restrictions), according to their protocols, in the public interest 
(https://web.www.healthdatagateway.org/dataset/594cfe55-96e3-45ff-
874c-2c0006eeb881). The code for the hierarchical Gaussian process 
model is freely available at https://gitlab.com/KCL-BMEIS/covid-zoe/
prediction-gp.

Acknowledgments
ZOE provided in-kind support for all aspects of building, running, 
and supporting the app and service to all users worldwide. This work 
was supported by the Wellcome Engineering and Physical Sciences 
Research Council Centre for Medical Engineering at King’s College 
London (WT 203148/Z/16/Z) and the UK Department of Health via the 
National Institute for Health Research (NIHR) Comprehensive 
Biomedical Research Centre Award to Guy’s and St Thomas’ NHS 
Foundation Trust in partnership with King’s College London and 
King’s College Hospital NHS Foundation Trust. Investigators also 
received support from the Medical Research Council, the British Heart 
Foundation, the Alzheimer’s Society, the EU, the NIHR, the COVID-19 
Driver Relief Fund, and the NIHR-funded BioResource, Clinical 
Research Facility, and Biomedical Research Centre based at Guy’s and 
St Thomas’ NHS Foundation Trust, in partnership with King’s College 
London. SO was supported by the French Government through the 
3IA Côte d’Azur Investments in the Future project managed by the 
National Research Agency (reference number ANR-19-P3IA-0002). 
ATC was supported by a Stuart and Suzanne Steele Massachusetts 
General Hospital Research Scholar Award. LHN, DAD, and ATC were 
supported by the Massachusetts Consortium on Pathogen Readiness. 
This research was funded in part by the Wellcome Trust 
(215010/Z/18/Z).

References
1 Sironi M, Hasnain SE, Rosenthal B, et al. SARS-CoV-2 and 

COVID-19: a genetic, epidemiological, and evolutionary perspective. 
Infect Genet Evol 2020; 84: 104384.

2 Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce 
medical resources in the time of Covid-19. N Engl J Med 2020; 
382: 2049–55.

3 Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory 
diagnosis of COVID-19: current issues and challenges. 
J Clin Microbiol 2020; 58: 512–20.

4 Binnicker MJ. Challenges and controversies to testing for COVID-19. 
J Clin Microbiol 2020; 58: 58.

5 Rubin R. The challenges of expanding rapid tests to curb COVID-19. 
JAMA 2020; 324: 1813–15.

6 Drew DA, Nguyen LH, Steves CJ, et al. Rapid implementation of 
mobile technology for real-time epidemiology of COVID-19. Science 
2020; 368: 1362–67.

7 Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of 
self-reported symptoms to predict potential COVID-19. Nat Med 
2020; 26: 1037–40.

8 Ye J. The role of health technology and informatics in a global 
public health emergency: practices and implications from the 
COVID-19 pandemic. JMIR Med Inform 2020; 8: e19866.

9 Bastiani L, Fortunato L, Pieroni S, et al. Rapid COVID-19 screening 
based on self-reported symptoms: psychometric assessment and 
validation of the EPICOVID19 Short Diagnostic Scale. 
J Med Internet Res 2021; 23: e23897.

10 Sudre CH, Lee KA, Ni Lochlainn M, et al. Symptom clusters in 
COVID-19: a potential clinical prediction tool from the COVID 
Symptom Study app. Sci Adv 2021; 7: eabd4177.

11 National Health Service. Coronavirus (COVID-19). Nov 1, 2020. 
https://www.nhs.uk/conditions/coronavirus-covid-19/ (accessed 
Feb 2, 2021).

12 Canas LS, Sudre CH, De Vita E, et al. Prion disease diagnosis using 
subject-specific imaging biomarkers within a multi-kernel Gaussian 
process. Neuroimage Clin 2019; 24: 102051.



Articles

12 www.thelancet.com/digital-health   Published online July 29, 2021   https://doi.org/10.1016/S2589-7500(21)00131-X

13 Varsavsky T, Graham MS, Canas LS, et al. Detecting COVID-19 
infection hotspots in England using large-scale self-reported data 
from a mobile application: a prospective, observational study. 
Lancet Public Health 2021; 6: e21–29.

14 de G Matthews AG, van der Wilk M, Nickson T, et al. GPflow: 
a Gaussian process library using TensorFlow. J Mach Learn Res 2017; 
18: 1–6.

15 Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point 
and its corresponding Youden Index to discriminate individuals 
using pooled blood samples. Epidemiology 2005; 16: 73–81.

16 Magnavita N, Tripepi G, Di Prinzio RR. Symptoms in health care 
workers during the covid-19 epidemic. A cross-sectional survey. 
Int J Environ Res Public Health 2020; 17: 1–15.

17 Seirafianpour F, Sodagar S, Pour Mohammad A, et al. Cutaneous 
manifestations and considerations in COVID-19 pandemic: 
a systematic review. Dermatol Ther 2020; 33: e13986.

18 Ludzik J, Witkowski A, Hansel DE, Raess PW, White K, 
Leachman S. Case report: chilblains-like lesions (COVID-19 toes) 
during the pandemic—is there a diagnostic window? F1000 Res 
2020; 9: 668.

19 Bouaziz JD, Duong TA, Jachiet M, et al. Vascular skin symptoms in 
COVID-19: a French observational study. J Eur Acad Dermatol Venereol 
2020; 34: e451–52.

20 Shoer S, Karady T, Keshet A, et al. A prediction model to prioritize 
individuals for a SARS-CoV-2 test built from national symptom 
surveys. Med (N Y) 2021; 2: 196–208.

21 Shah ASV, Wood R, Gribben C, et al. Risk of hospital admission with 
coronavirus disease 2019 in healthcare workers and their households: 
nationwide linkage cohort study. BMJ 2020; 371: m3582.

22 Firew T, Sano ED, Lee JW, et al. Protecting the front line: a cross-
sectional survey analysis of the occupational factors contributing 
to healthcare workers’ infection and psychological distress during 
the COVID-19 pandemic in the USA. BMJ Open 2020; 
10: e042752.

23 Bhopal SS, Bhopal R. Sex differential in COVID-19 mortality varies 
markedly by age. Lancet 2020; 396: 532–33.

24 Gómez-Belda AB, Fernández-Garcés M, Mateo-Sanchis E, et al. 
COVID-19 in older adults: what are the differences with younger 
patients? Geriatr Gerontol Int 2021; 21: 60–65.

25 Unim B, Palmieri L, Lo Noce C, Brusaferro S, Onder G. Prevalence 
of COVID-19-related symptoms by age group. Aging Clin Exp Res 
2021; 33: 1145–47.

26 Wenham C, Smith J, Morgan R. COVID-19: the gendered impacts 
of the outbreak. Lancet 2020; 395: 846–48.

27 Quer G, Radin JM, Gadaleta M, et al. Wearable sensor data and 
self-reported symptoms for COVID-19 detection. Nat Med 2021; 
27: 73–77.

28 Natarajan A, Su H-W, Heneghan C. Assessment of physiological 
signs associated with COVID-19 measured using wearable devices. 
NPJ Digit Med 2020; 3: 156. 

29 Bielicki JA, Duval X, Gobat N, et al. Monitoring approaches for 
health-care workers during the COVID-19 pandemic. 
Lancet Infect Dis 2020; 20: e261–67.

30 Chowdhury AZ, Jomo KS. Responding to the COVID-19 pandemic 
in developing countries: lessons from selected countries of the 
global south. Development (Rome) 2020; published online Nov 10. 
https://doi.org/10.1057/s41301-020-00256-y. 


	Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study
	Introduction
	Methods
	Data sources
	Data analysis and models definitions
	Power of the models to predict COVID-19 positivity
	Stratification of feature relevance in population subgroups
	Confidence of label prediction
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


