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Abstract

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2
in Italy by using a computational epidemic model which takes into account demographic, mobility,
vaccines, as well as estimates of the introduction and spreading of the more transmissible Alpha
variant. We consider six sub-national regions and study the effect of vaccines in terms of number
of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to
counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine adminis-
tration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines
allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted
29, 350 (IQR: [16, 454 − 42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564 − 6, 980, 070]) infections
and a new pandemic wave in the country. During the same period, they achieved a −22.2% (IQR:
[−31.4%; −13.9%]) reduction in the IFR. We show that a campaign that would have strictly pri-
oritized age groups at higher risk of dying from COVID-19, besides frontline workers, would have
implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies
targeting the most active age groups would have prevented a higher number of infections but would
have been associated with more deaths. Finally, we study the effects of different vaccination intake
scenarios by rescaling the number of available doses in the time period under study to those admin-
istered in other countries of reference. The modeling framework can be applied to other countries to
provide a mechanistic characterization of vaccination campaigns worldwide.

Introduction

After almost a year marked by the implementation of non-pharmaceutical interventions (NPIs) [1–5]
and enormous losses in terms of human lives and socioeconomic disruptions, on the 27th of December,
2020, simultaneously with other European countries, the first dose of vaccine against COVID-19 was
administered in Italy [6]. The vaccine rollout proceeded prioritizing healthcare personnel, care facilities
residents, and 80+ individuals. Unfortunately, as in many other countries, the success of the COVID-19
vaccination campaign was hindered by several obstacles. Delays in deliveries from suppliers, temporary
suspensions and changes in the administration protocol of the AstraZeneca vaccine, and the logistical
issues linked to the delivery of millions of doses over the national territory are just some examples.
Furthermore, the vaccine rollout and its effect on the pandemic were challenged by the March 2021
epidemic surge due to the spread of the more transmissible SARS-CoV-2 Alpha variant (Pango lineage
B.1.1.7), first detected in the United Kingdom in September 2020 [7–12]. In Italy, the first Alpha case
was identified in late December 2020. By week 4 of 2021 the variant was responsible for more than 50%
of newly reported cases, and for more than 80% by week 12 [13].

In this complex epidemiological landscape, it is extremely important to provide a characterization of
the effects of the vaccination program and to which extent they contributed to a decrease in the number
of newly reported cases and deaths. In the United Kingdom it has been estimated that the vaccines
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averted around 30′000 additional deaths during the first six months of 2021 [14] and saving around
279′000 lives in the United States during the same period [15]. In the context of Italy, optimal allocation
of vaccines [16, 17] and the potential combined effect of NPIs and rollout on epidemic scenarios [18] have
been explored. A national level study [19], explored the impact of the vaccination program in Italy and
evaluate possible prospects for reopening the society.

Here, we develop a computational multi-strain epidemic model able to provide a detailed sub-national
characterization of the first six months of the Italian COVID-19 vaccination campaign. We inform the
model with real data on mobility changes [20] and policy interventions [21] capturing the variations
in contacts modulated by NPIs. We use a mechanistic approach based on international travel flows
to characterize the Alpha variant introductions [22, 23]. Data on vaccines rollout come from official
sources of the Italian Government [24] and consider separately the four vaccines currently authorized
in Italy: Pfizer/Biontech, Moderna, Vaxzevria (Astrazeneca), and Janssen (Johnson & Johnson). This
data provides the number of daily inoculations by age, priority group, geographical area, and vaccine
supplier. The model is calibrated on reported weekly deaths over the period 2020/09/01 - 2021/07/05
separately for different NUTS1 regions through an Approximate Bayesian Computation method [25].

We estimate that vaccines averted 29, 350 (IQR: [16, 454 − 42, 826]) deaths and 4, 256, 332 (IQR:
[1, 675, 564−6, 980, 070]) infections between 2020/12/27 and 2021/07/05 with respect to a counterfactual
scenario without vaccines and the actually implemented NPIs. In the same period, they contributed to
an overall reduction of the Infection Fatality Rate (IFR) by −22.2% (IQR: [−31.4%; −13.9%]). We
also estimate that even even with stringent additional NPIs, the absence of vaccines would have led to
12K+ more deaths and 540K+ infections. Furthermore, we study counterfactual scenarios in which
we either assign vaccine in a very strict decreasing age order or first to 20-49 age groups. We estimate
that 31, 786 (IQR: [19, 115 − 44, 733]) deaths would have been averted in the first scenario and only
21, 440 (IQR: [8, 006− 35, 429]) when prioritizing younger age groups. Nonetheless, the second strategy
would have implied less infections. We also explore the effects of different rollout speeds applying the
vaccination rates observed in the United Kingdom (UK) and the United States (US). As expected, when
more doses are available (vaccination rates of UK or US), additional benefits are observed in terms of
averted deaths and infections. Interestingly, we find that not only the number of vaccines but also the
timing of availability is an important factor determining the outcome of the vaccination campaign. For
instance, a vaccination rate timeline similar to the US one would have resulted in an additional ∼ 45%
averted deaths (median: 42, 578, IQR: [29, 768− 55, 835]).

The presented modeling framework is a general tool for the mechanistic study of counterfactual sce-
narios evaluating, and informing the design of vaccination campaigns, and can be extended to additional
countries depending on data availability.

Results

We adopt a SLIR-like compartmentalization setup with the addition of specific compartments to account
for vaccination and the emergence of a more transmissible virus strain. The model includes the age-
stratification of the population and of their contacts. Specifically, the population is divided into ten
age groups and the contacts between them are defined by a country-specific contacts matrix C from
Ref. [26]. Variations in contacts induced by non-pharmaceutical interventions at workplaces and in
the community settings are modelled considering data from the COVID-19 Community Mobility Report
published by Google [20]. We account for restrictions in schools using the Oxford COVID-19 Government
Response Tracker [21] and the timeline of government interventions. The model includes a seasonal
modulation to account for variations in factors such as humidity and temperature that can influence
transmissibility [23, 27]. As a way to include a second, more transmissible virus strain, the compartmental
structure is extended with specific Latent and Infectious compartments. We refer the reader to the
Material and Methods section and the Supplementary Information for further details about the epidemic
model as well as for a sensitivity analysis around the choice of parameters presented below.

To capture geographical heterogeneities in vaccines’ administration, spreading of the virus, and vari-
ant’s importations our model is run for each NUTS1 region in Italy. In addition, we split the NUTS1
region Isles into its two NUTS2 territories, Sicily and Sardinia. As a result, we model six different areas:
North West, North East, Center, South, Sicily and Sardinia. The number of individuals in different age
groups for each region is taken from the official census [28]. We use official sources for the epidemiological
data [29]. As detailed in the Material and Methods section, the model is calibrated separately for each
of the six regions using an Approximate Bayesian Computation (ABC) technique [25, 30]. We set the
calibration period to 2020/09/01-2021/07/05 and we use weekly deaths as output quantity. The free
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COVID-19 Vaccination Campaign in Italy

Figure 1: Vaccination campaign in Italy. A) Number of daily first and second administered daily
in the country. B) Percentage of total population vaccinated with one/two dose in different regions
considered. C) Average age of those who received the first dose of vaccines (dashed line). Grey lines
indicate the average age of vaccinated in different regions considered. D) Total number of first doses
administered between 2020/12/27 and 2021/07/05 by vaccine supplier.

parameters are the transmissibility β, the delay in deaths reporting ∆, the modulation of seasonality
αmin, and the initial conditions for the number of individuals in each compartment.

We model the vaccines rollout in Italy from official data [24] which provides the number of daily doses
(1st and 2nd) divided by age groups, risk category, supplier, and region. In Fig. 1A we plot the number of
1st and 2nd doses administered daily in the country as reported by official sources [24]. The first batch of
Pfizer/BioNTech vaccines received in late December 2020 was administered mainly to healthcare workers
and care facilities residents. These individuals received the 2nd dose in the last two weeks of January.
This explains the very low number of 1st doses given in this time range. Similarly, the decline observed
since early June 2021 is due to the high number of 2nd doses administered during this period. As of
2021/07/05, 58.1% of the total population received at least one dose, while 32.7% received two, with low
variability across different regions (see Fig. 1B). In Fig. 1C we show the average age of the vaccinated in
time. We see the following trend: in January/February 2021 the average age is around 50, this is due to
the vaccinations of healthcare personnel; after, the campaign proceeded prioritizing mainly the elderly
as shown by the increase of average age; finally, from mid-April average age of the vaccinated declines
since the rollout was extended to younger age brackets. The grey lines indicate the average age of the
vaccinated in the different regions considered. As we can see, they do not diverge significantly from the
national average. Finally, in Fig. 1D we show the total number of (first) doses administered by vaccine
suppliers. We see that most of the people received the Pfizer/BioNTech vaccines (68.9%), followed by
Vaxzevria (AstraZeneca) (18.4%), Moderna (9.0%), and Janssen (Johnson&Johnson) (3.7%).

Our model explicitly accounts for the emergence and spread of the more transmissible SARS-CoV-2
variant Alpha. The introductions of this lineage in the different regions are estimated with the Global
Epidemic and Mobility model (GLEAM [22, 23, 31]) using actual origin-destination data during the
period 2020/09/01-2020/12/31 (see details in the Material and Methods section). In Fig. 2A we show
the estimated date of dominance yield by the model calibration, defined as the first day in which Alpha
variant was responsible for at least 50% of the infections. Across the different regions, we estimate that
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Figure 2: Alpha Variant Spreading and Dominance. A) Estimated date of dominance of the Alpha
variant in different regions. B) Comparison between estimated and reported national prevalence of Alpha
variant.

Alpha became dominant within the first two weeks of March, 2021.
In Fig. 2B we compare the estimated national Alpha variant prevalence (median and 90% CI) with

available genomic data from GISAID [13, 32]. Our modeling approach is able to reproduce the national
growth of Alpha variant. The correlation between the simulated and real prevalence (Pearson ρ = 0.84,
p < 0.001) is remarkable (weighted mean absolute percentage error wMAPE = 0.34). We acknowledge
a deviation between simulated and real prevalence by late April. This is due to the emergence of the
Delta variant, which has been estimated to be more transmissible than Alpha [33] and that we do not
include in our model.

Averted Deaths and Infections

In Fig. 3A we show the estimated number of COVID-19 deaths and infections averted by vaccines. To
obtain these quantities, we first calibrate the model using real data on mobility, policy interventions, epi-
demic evolution, and vaccines rollout. Then, we compare the number of projected deaths and infections
in simulations with vaccines administered and without.

The results suggest that vaccines avoided 29, 350 (IQR: [16, 454−42, 826]) deaths between 2020/12/27-
2021/07/05. This is about 50% of the number of deaths reported in the country during the same period.
If we look at the different regions considered, 8, 877 (IQR: [5, 502 − 12, 429]) deaths were averted in
North West, 3, 121 (IQR: [498− 6, 035]) in North East, 6, 498 (IQR: [4, 144− 8, 700]) in Center, 7, 960
(IQR: [4, 885− 11, 216]) in South, 2, 253 (IQR: [1, 206− 3, 314]) in Sicily, and 640 (IQR: [219− 1, 132])
in Sardinia. To give a better idea, these numbers (medians) corresponds to the following percentages of
the total number of deaths observed in the regions during the same period: 58% in North-West, 20% in
North East, 60% in Center, 65% in South, 63% in Sicily, and 77% in Sardinia.

Similarly, 4, 256, 332 (IQR: [1, 675, 564− 6, 980, 070]) infections were avoided in the country, divided
into the different regions as follows: 987, 556 (IQR: [226, 372 − 1, 760, 203]) in North West, 482, 314
(IQR: [72, 632− 975, 406]) in North East, 865, 176 (IQR: [474, 062− 1, 282, 665]) in Center, 1, 296, 823
(IQR: [584, 453 − 2, 042, 629]) in South, 450, 259 (IQR: [246, 653 − 642, 726]) in Sicily, and 174, 204
(IQR: [71, 392− 276, 441]) in Sardinia.

Furthermore, our results suggest that vaccines prevented an additional COVID-19 wave. In Fig. 3B
we show the estimated number of weekly deaths (median and 90% CI) at the national level in the
simulations with and without vaccines. The two curves start to visibly diverge in mid-March, around the
peak of the wave of infections led by the emergence and dominance of the Alpha variant. Interestingly,
the difference between the two curves becomes even bigger by late April, when some restrictions were
partially eased in the country. We estimate that, in absence of the vaccines, this reopening would led to
a rapid resurgence in infections and deaths, reaching a peak higher than those observed in January and
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March 2021. We note how this result should be interpreted carefully. Indeed, an hypothetical upturn in
fatalities would have likely led to countermeasures, a u-turn in the reopening timeline, and as result to a
lower disease burden at the price of further socio-economic losses. Although it is very hard to assess the
extent to which new restrictions would have been put in place in case of an epidemic resurgence, in the
Supplementary Information, we investigate a scenario where NPIs as strict as those put in place in the
second pandemic wave would have been used to contrast the disease resurgence in absence of vaccines.
In other words, we modified the baseline against which the impact of vaccines is measured. The results
indicate that, even with a very strong reduction of socio-economic activities, the absence of vaccines
would have led to 12K+ more deaths and 540K+ infections. These numbers are in line with estimates
recently reported in Ref. [19].

Counterfactual vaccination scenarios

We implement several counterfactual scenarios to assess the effectiveness and quantify the impact of
different vaccines allocation strategies. Along with the real vaccine allocation, that we will call actual
strategy, we consider two additional counterfactual strategies. In strategy 2 we imagine a scenario where
vaccines are allocated in decreasing age order starting from the 80+. This allocation strategy aims
at reducing disease severity by targeting first individuals at higher risk of facing severe outcomes such
as hospitalization and death. It is important to mention that the actual strategy and strategy 2 are
very similar. However, in the actual rollout strategy some categories, for example teachers and other
professional category, were added to the list of priority (in some regions) thus not respecting the strict
age order we consider in strategy 2. In strategy 3, instead, we first allocate vaccines to the age groups
20 − 49 and then homogeneously to the rest of the population. This strategy aims at reducing disease
transmission prioritizing individuals that are socially active. It is important to notice how both strategies
account for front-line workers and the fragile population as recorded in the data. For more details on
the vaccine allocation scenarios see the Materials and Methods section.

In Fig. 4A we compare these strategies in terms of averted COVID-19 deaths and infections. Since
the different regions considered have different populations, we express averted deaths and infections
as percentages with respect to the baseline simulations without vaccines. We see a common pattern
emerging. Indeed, in all regions strategy 2 is the most effective in reducing the number of deaths,
followed by the actual strategy and strategy 3. As a concrete example, we estimate that in South Italy
vaccines averted 29% (IQR: [19%−37%]) of the deaths that would have been observed without vaccines.
This figure increases to 32% (IQR: [22% − 40%]) when the strategy 2 is considered, while it drops to
20% (IQR: [9% − 30%]) with strategy 3. When instead averted infections are considered, we find the
ordering inverted: strategy 3 is the most efficient in reducing COVID-19 infections, followed by the actual
strategy and strategy 2. This is in line with previous findings in the context of COVID-19 vaccination
modeling [34, 35]. At the national level, we estimate that the strategy targeting first strictly the elderly
would have prevented more deaths (31, 786, IQR: [19, 115− 44, 733]) with respect to the actual strategy
(29, 350, IQR: [16, 454−42, 826]), while a strategy prioritizing the younger would have avoided much less
deaths (21, 440, IQR: [8, 006− 35, 429]). Similarly, we compare strategies according to their impact on
the Infection Fatality Rate (IFR), defined as the fraction of infections that result in death. In Fig. 4B we
show, at both regional and national level, the percentage reduction of the IFR achieved as of 2021/07/05
with different vaccine allocation strategies (medians and IQRs are reported). We note a much more
marked distinction between strategies with respect to results in Fig. 4A. This is not surprising, indeed
the same reduction in deaths, for example, can be achieved both reducing mortality or the number of
people that are reached by the disease. As expected, across the different regions, when vaccines are not
considered the IFR remains constant (i.e., reduction of −0.06%, IQR: [−0.99%;1.27%]). The strategy 2
is instead the most effective one in reducing the IFR, followed by the actual strategy, and finally strategy
3. Indeed, we estimate that in Italy vaccines reduced COVID-19 IFR by −22.2% (IQR: [−31.4%;
−13.9%]), while a strategy prioritizing strictly the elderly would have implied a reduction of −29.2%
(IQR: [−38.2%; −21.2%]). On the other hand, a strategy targeting the younger would have had a very
small impact on IFR (−2.1%, IQR: [−6.0%; 1.5%]).

One additional question concern what could have happened in Italy with the availability and timeline
of vaccination programs as in other countries such as United Kingdom and the United States. In Fig. 5
we show averted deaths considering the vaccine allocation and rescaling doses to match vaccination
rates in the UK and US. At the sub-national level, averted deaths (median and IQR) are expressed as
percentage of fatalities observed in the simulations without vaccines. We also report the total number of
averted deaths (median and IQR) at the country level. We estimate that 46, 046 (IQR: [33, 696−59, 022])
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Figure 3: Averted deaths and infections. A) Estimated averted deaths and infections in different
regions considered with respect to a baseline without vaccines. Median and interquartile (IQR) range
are reported. B) Number of weekly deaths at the country level as reported by official surveillance and
as estimated by our model with and without vaccines rollout (median and 90% confidence intervals
displayed).
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Figure 4: Comparison of vaccine allocation strategies. A) Averted COVID-19 deaths and in-
fections, both at subnational and national level (medians and interquartile ranges are reported). B)
Percentage reduction of the Infection Fatality Rate as of 2021/07/05. In all panels, actual strategy de-
notes an allocation strategy that follows the observed allocation as it unfolded during the pandemic,
strategy 2 considers the case where vaccines are allocated in decreasing age order starting from the 80+,
strategy 3 considers the case in which vaccines are first allocated to the age groups 20 − 49 and then
homogeneously to the rest of the population, and no-vaccine denotes the counterfactual scenario in which
vaccines were not administered.
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Figure 5: Comparison of vaccination speeds and doses. We show the percentage of deaths averted
with respect to simulations without vaccines in different regions considering the real data-driven cam-
paign, and rescaling the number of doses to match those administered in the United Kingdom and the
United States. We also report the estimated total number of deaths (median and IQR) averted in Italy
as well as the number of cumulative doses administered in the scenarios.

deaths would have been averted if Italy had the same availability of vaccines of the UK, and 42, 578 (IQR:
[29, 768 − 55, 835]) when matching the availability of the US. This implies approximately an additional
16, 700 and 13, 200 lives saved with respect to the actual rollout case in the case of, respectively, UK and
US. We note how the total number of doses administered in the period under study differs in the three
scenarios. We see in Fig. 5 that as of 2021/07/05 33.1M doses are administered in Italy, 41.8M when
matching the UK, and 35.4M when matching US.

Discussion

We presented the anatomy of the first six months of the vaccine rollout in Italy. We showed that vaccines
prevented an additional wave of infections after the partial reopening of the country in late April, 2021.
These results (49 averted deaths per 100, 000) are in line with reports from the United Kingdom and the
United States, where, respectively, in first six months of the rollout around 30′000 (45 per 100, 000) and
279, 000 (85 per 100, 000) additional deaths have been averted [14, 15].

Thanks to the mechanistic nature of our modeling approach, we analyzed and compared different
vaccines allocation strategies through counterfactual scenarios. The strategy strictly prioritizing the
elderly would have prevented more deaths and contributed to a higher reduction in the observed IFR.
On the other hand, prioritizing the most active age groups (i.e., younger) we would have averted more
infections but lead to more fatalities. Similarly, rescaling the number of available doses to those delivered
in other countries of reference, we tested the effects of faster vaccination rates.

The present work comes with limitations. First, the compartmental setup used to model disease
progression is a relatively simple one compared to other approaches that consider, for example, also the
pre-symptomatic and asymptomatic stages of the infection [36, 37]. Nonetheless, it has been previously
used in several works in the context of COVID-19 modeling [22, 38–40]. Second, both the vaccination pro-
tocol and the effect of vaccines on disease progression are an approximation of reality [41]. For simplicity
we considered, besides the wild type, only one additional virus strain, although we acknowledge that the
Alpha variant was not the only variant of concern circulating in Italy during the period considered [42].
Beside the importation data from GLEAM, we model each region separately, thus neglecting the coupling
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between them via different forms of mobility. Finally, in the counterfactual scenarios we considered all
individuals willing to receive vaccines. While the current vaccination rates in Italy show a high vaccine
acceptance (81.5% of the population 12+ completed the vaccination course and 85.7% received at least
one dose as of 2021/10/19 according to official sources [43]), this is an optimistic assumption. In the
Supplementary Information we relax this and we study the effect of vaccine hesitancy. We measured the
effects of vaccines respect to a baseline that considers the observed contact patterns during the rollout.
As mentioned above, the resurgence of infections and deaths, that would have been observed without
vaccines, would have led to new NPIs aimed at limiting the chains of infections. In the Supplementary
Information, we investigate a different baseline where an uptick of cases and deaths is associated to
NPIs as strict as those put in place in second pandemic wave (i.e. fall 2020). Interestingly, even with
a very strong reduction of socio-economic activities the lack of vaccines would have led to 12K+ extra
deaths and 540K+ infections. These number are in line with the recent estimates presented in Ref. [19].
Hence, it is important to acknowledge how the selection of the baseline against which the impact of the
rollout is quantified affects the results. As we have experienced throughout 2020, very restrictive NPIs
can reduce the burden of the disease in absence of vaccines. However, it is very hard to estimate what
would have been the response to a new pandemic wave induced by the Alpha variant and the lack of
vaccines, especially considering the NPIs fatigue of the population after months of restrictions.

In conclusion, we combined mathematical modeling and data to provide a realistic representation of
the interplay of COVID-19 spread, vaccines rollout, NPIs, and the emergence of a more transmissible
virus strain. The results highlight the strong positive impact and key role of vaccines in the evolution
of the COVID-19 pandemic in Italy. While we have focused only on the Italian context, our approach
can be easily extended to other countries helping to characterize and evaluate vaccination campaigns
worldwide.

Materials and Methods

The epidemic model

Individuals who are susceptible to the disease are placed in the S compartment. Interacting with the
infectious, they can get infected and transition to the Latent L compartment. After the latent period ϵ−1,
L become infectious and enter the compartment I. Lastly, after the infectious period µ−1, I individuals
transition to the Removed compartment R (a schematic representation of the compartmental structure
is provided in Fig. 6). Similar approaches have been previously used to model disease progression in the
context of COVID-19 [22, 39, 40]. Furthermore, we account for the age-stratification of the population
and of their contacts. Individuals are divided into the following 10 age groups: 0−9, 10−19, 20−24, 25−
29, 30−39, 40−49, 50−59, 60−69, 70−79, 80+. The number of contacts between age groups is defined by
the country-specific contacts matrix C from Ref. [26]. We simulate the number of daily deaths considering
removed individuals for each age group and the age stratified Infection Fatality Rate (IFR) from Ref. [44].
To account for delays between the transition I → R and actual death, we record fatalities computed on
the recovered of a certain day only after ∆ days. In addition, we introduce a seasonal modulation to
model variations in factors such as humidity and temperature that can influence transmissibility [23, 27].
In practice this implies a rescaling of the effective reproductive number Rt → si(t)Rt, with si(t) equal
to the following function:

si(t) =
1

2

[(
1− αmin

αmax

)
sin

(
2π

365
(t− tmax,i) +

π

2

)
+ 1 +

αmin

αmax

]
(1)

Where i refers to the hemisphere considered, and tmax,i is the time corresponding to the maximum of
the sinusoidal function. For the northern hemisphere it is fixed to January 15th. We set αmax = 1 and
consider αmin as a free parameter (see more details below).

Additional Latent and Infectious compartments are included to model a second, more transmissible
virus strain. Given β as the transmission rate of the wild type, the second strain has a rate β(1 + ψ),
where ψ captures the increased transmissibility. We assume that the this second strain has the same
latent and infectious period as well as IFR of the wild type, and we set ψ = 0.5, compatible with the
characteristics of the Alpha variant [7, 10]. In the Supplementary Information we repeat the analyses
considering different values of ψ and an increased IFR. Individuals infected with the second strain are
initialized considering realistic estimates of Alpha variant importations from GLEAM [22, 23, 31] during
the period 2020/09-2020/12, more details on importations are provided below.
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Figure 6: Schematic representation of the epidemic model and transitions between compart-
ments. For simplicity, we represent the model for a single age group.

V E1 (V ES1) V E2 (V ES2) ∆V 2

Wild Type Alpha Wild Type Alpha
Pfizer 90% (80%) 50% (40%) 95% (90%) 90% (80%) 21 days

Moderna 90% (80%) 50% (40%) 95% (90%) 90% (80%) 28 days
AstraZeneca 70% (60%) 50% (40%) 80% (70%) 75% (65%) 90 days

Janssen 70% (60%) 50% (40%) / / /

Table 1: Vaccine efficacy.

Finally, we include specific compartments to model the vaccination campaign. Our general modeling
setup accommodates both single and two doses vaccines. Individuals who received one dose of vaccine
move to the compartment V1 and see their probability of infection reduced by a factor 1 − V ES1,
where V ES1 represents the effectiveness of vaccine against infection. If V1 individuals get infected, their
IFR is also reduced by a factor 1 − V EM1. This implies that the overall efficacy of the 1st dose is
V E1 = 1− (1− V ES1)(1− V EM1). If the vaccine has a two doses regiment, V1 individuals then receive
the second inoculation after ∆V 2 days and transition to the compartment V2. Similarly to the 1st dose,
the 2nd dose provides an efficacy V ES2 and VM2 implying an overall V E2 = 1− (1−V ES2)(1−V EM2).
We also consider that all vaccinated individuals are less infectious by a factor (1 − V EI) (V EI =
40% [45]) and that vaccines have reduced efficacy against the Alpha variant. We model separately the
different vaccines authorized in Italy: Pfizer/BioNTech (∆V 2 = 21days), Moderna (∆V 2 = 28days),
Vaxzevria/AstraZeneca (∆V 2 = 90days), an Janssen (single dose). Since vaccine protection is not
immediate, we introduce a delay of ∆V days between administration (of both 1st and 2nd dose) and
actual effect of the vaccine. For example, an individual who received the 1st dose on day t, will be
protected with efficacy V E1 only after ∆V days. Here we set ∆V = 14days. Values of vaccine efficacy
and ∆V 2 used in the simulations are reported in Tab. 1. We use Ref. [45] to inform the choice of different
vaccine efficacy.

Modeling of Non-pharmaceutical Interventions

The contacts matrix C, which defines the rates of contact between age groups, is made up of four
contribution: contacts that happen at home (Chome), school (Cschool), workplace (Cwork), and general
community settings (Ccommunity). We model the variations in contacts induced by non-pharmaceutical
interventions at workplaces and in the community settings using data from the COVID-19 Community
Mobility Report published by Google [20]. More in detail, the report provides the positive or negative
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percentage variation wl(t) of number of visits to specific location l on day t with respect to a pre-
pandemic baseline. We compute a proxy of contacts variation as follows: rl(t) = (1 − wl(t)/100)

2.
Indeed, the number of contacts between individuals is proportional to the square of their number. We use
the field workplaces percent change from baseline to compute the contacts variations parameter
in workplaces, and the average of the fields retail and recreation percent change from baseline

and transit stations percent change from baseline for the general community settings. The data
are provided at the level of the NUTS2 regions. We derive the contacts variation parameters for a NUTS1
region computing the weighted average with respect to the population of the parameters of the included
NUTS2 territories. Lastly, we also perform temporal aggregation taking the weekly average of these
parameters.

We model variations in contacts in schools using the timeline of policy interventions. More in detail,
we reproduce the two phases of the Italian government approach to the implementation of containment
measures. During the first one (before 2020/11/06), interventions where taken mostly at the national
level. We capture the effects of NPIs on schools in this phase using data from the Oxford COVID-19
Government Response Tracker [21]. The report provide daily indexes expressing the strictness of policies
regarding school closures at the national level. During the second phase, regions where divided into risk
zones according to the local state of the epidemic [46]. Each risk zone had specific rules regarding schools
and allowed activities. We model this taking into account the actual time-varying definition of risk zones
in Italy. Full details are provided in the Supplementary Information.

Modeling Introductions of the Alpha Variant

We model the introduction of Alpha variant infections in each geographical area using GLEAM, a
global stochastic metapopulation model that simulates the mobility of people across more than 3,300
sub-populations in about 190 countries/territories [22, 23, 31]. Sub-populations are defined by the
catchment area of major transportation hubs and mobility among them includes both long-range air
travel (obtained from the International Air Transport Association and Official Airline Guide (OAG)
databases) and short-scale commuting patterns. Origin-destination data on passengers provided by the
OAG [47] from 2020 are used to model international airline travel. The model is calibrated to importation
of cases from China at the beginning of the Pandemic as well as the evolution of deaths in each country.
GLEAM accounts for travel limitations, mobility reductions, and government interventions. We account
for the stochastic nature of importations and onset of local transmission considering 307, 000 stochastic
simulations generated by the model. We consider arrivals of individuals in the latent compartment only
for each age bracket. Indeed, travelers were required to show a negative test and other measures were
implemented in airports to prevent symptomatic individuals to travel. The first two specimens of the
Alpha variant were collected on September 20 and 21, 2020 in London and in the Kent area. As the UK
sequences about 5% of positive cases [48], we modeled the emergence of the Alpha variant on week 38 of
2020 assuming a cluster of symptomatic/exposed infectious individuals drawn from a Poisson distribution
with mean value of 40 symptomatic individuals. In the main text, we assume the new variant as 50%
more transmissible (i.e., ψ = 0.5), in line with current estimates [7].

Counterfactual Vaccine Allocation Scenarios

We investigate the impact of two counterfactual vaccination strategies in which we change the allocation
strategy. Strategy 2 aims at mitigating the spread by reducing the severity of the disease. This is
achieved prioritising the part of population exposed to higher risks of facing severe outcomes (e.g., death)
if infected. Since the IFR of COVID-19 strongly correlates with age, in this scenario we start vaccinating
the age group 80+ and then we proceed in strictly decreasing order of age until all 50+ individuals are
vaccinated. After, we distribute vaccines homogeneously to the population under 50 since we assume
that vaccines are made available to everyone after that individuals associated with higher IFR have
been vaccinated. With strategy 3 disease mitigation is achieved by reducing transmission rather than
severity. In our simulations, this translates in targeting first the most active age groups and then the
rest of the population. Following previous work in the context of COVID-19 vaccination campaign, we
select the age groups 20 − 49 as the primary target of this allocation strategy [34, 35]. These former
studies also showed that prioritising the elderly is preferable in terms of number of averted deaths, while
vaccinating the younger is more efficient at reducing cumulative incidence. In both scenarios, we still
give vaccines according to the real data to healthcare workers, care facilities residents, and people with
comorbidities that are considered risk factor for COVID-19. Official sources stopped to provide the
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Figure 7: Average age of vaccinated in different allocation strategies. Actual strategy denotes
the observed vaccine allocation as it unfolded during the pandemic, strategy 2 considers the case where
vaccines are allocated in decreasing age order starting from the 80+, and strategy 3 considers the case
in which vaccines are first allocated to the age groups 20− 49 and then homogeneously to the rest of the
population.

information regarding the categories of the vaccinated individuals on 2021/05/26, therefore after this
date we allocate vaccines following only the strategy considered. Vaccines in Italy were administered
to the 12+ population. To match our age group resolution, in the counterfactual vaccine allocation
strategy 2 and 3 we only give vaccines to the 10+ individuals. In Fig. 7 we show the average age of
vaccinated individuals in different allocation strategies. Across the regions considered, we observe that at
the beginning of the rollout different strategies look similar. Indeed, in that period received the vaccines
healthcare workers and fragile individuals that are accounted for also in the counterfactual scenarios
as mentioned previously. Since the beginning of February 2020, instead, strategies start to differ. In
particular, the strategy targeting the elderly (strategy 2 ) shows a higher average age with respect to the
(actual strategy). This is because, despite elder individuals were prioritized in the actual vaccination
campaign in Italy, also other categories were initially given a priority, such as teachers. Reasonably, the
strategy targeting first younger individuals (strategy 3 ) shows a lower average age of vaccinated with
respect to the other two. In the counterfactual strategies we assume that all individuals are willing to
receive the vaccine.

We consider additional counterfactual scenarios in which we apply to Italy the vaccination rates of
other countries of reference, namely United Kingdom, and United States. These countries administered
more vaccines than Italy as of 2021/07/05, and were faster especially during the early months of the
rollout. We rescale the number of doses as follows. If in Italy on day t were administered xt doses per
person (Xt in total), while in the other country yt, in the counterfactual scenario we deliver on day t a
number of doses X ′

t = Nx · yt (where Nx is the Italian population). We stress how we only change the
number of available doses while we keep, in all scenarios, the same data-driven age allocation strategy and
the same vaccines administered. Indeed, we do not aim to replicate exactly the vaccination campaigns
of other countries of reference, but only to test different rollout rates.

Model Calibration

We calibrate the free parameters of the model using an Approximate Bayesian Computation (ABC)
technique [25, 30]. We define the prior distributions of the free parameters P (θ), a number accepted
sets N , an error metric m(E,E′), and a tolerance δ. We start sampling a set of parameters θ from P (θ)
and generate an instance of the model using these parameters. Then, using the chosen error metric we
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Parameter Symbol Value Source
Transmission rate β calibrated [49]
Latent period ϵ−1 4 days [51, 52]
Infectious period µ−1 2.5 days [51, 52]
Generation time TG 6.5 days [51, 52]
Infection Fatality Rate IFR age-stratified [53]
Delay in death ∆ calibrated [50]
Increased transmissibility of Alpha variant ψ 0.5 [7, 10]

Table 2: List of parameters and related sources.

compare an output quantity E′ of the model with the corresponding real quantity E: if m(E,E′) < δ
then we accept the set θ, otherwise we reject it. We repeat this accept/reject step until N parameter sets
are accepted. The empirical distribution of the accepted sets is an approximation of their real posterior
distribution. We produce model’s projections sampling parameters sets from the pool of accepted sets
and generating an ensemble of possible epidemic trajectories. We then compute median and confidence
intervals on this ensemble. In this work, we consider the following free parameters and priors:

• β, we explore values of the transmission rate parameter such that the associated Rt = ρ(C)s(t)βµ
on the first simulation day ∼ U(1.2, 2.0) [49];

• ∆ ∼ U(14, 25). The calibration range is informed by Ref. [50];

• αmin ∼ U(0.5, 1.0), in doing so we explore values from strong (0.5) to absent (1.0) seasonality;

• we select initial conditions from an ensemble of realistic estimates from GLEAM. Each estimate
has the number of individuals of different age groups in different compartments (S, L, I, R) on the
start of the simulation (2020/09/01).

The model is calibrated separately for each of the six regions considered. We set the calibration
period to 2020/09/01-2021/07/05. We consider weekly deaths as output quantity and the weighted
mean absolute percentage error (wMAPE) as error metric. We also set the number of accepted sets
N = 3000 and the tolerance δ = 0.40 for Sicily and Sardinia and δ = 0.35 for the remaining regions.
For the different basins, we represent in Fig. 8 the number of weekly real and simulated deaths (median
and 90% CI). We obtain a median wMAPE of 0.23 for North West, 0.26 for North East, 0.25 for Center,
0.18 for South, 0.30 for Sicily, and of 0.40 for Sardinia. In the Supplementary Information we report the
posterior distributions of the free parameters obtained through the ABC calibration.
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Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC
Medicine, 18(1):240, 2020.
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